网站首页
教育杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
医学杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
经济杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
金融杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
管理杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
科技杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
工业杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
SCI杂志
中科院1区 中科院2区 中科院3区 中科院4区
全部期刊
公務(wù)員期刊網(wǎng) 精選范文 心理素質(zhì)優(yōu)點(diǎn)和缺點(diǎn)范文

心理素質(zhì)優(yōu)點(diǎn)和缺點(diǎn)精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的心理素質(zhì)優(yōu)點(diǎn)和缺點(diǎn)主題范文,僅供參考,歡迎閱讀并收藏。

心理素質(zhì)優(yōu)點(diǎn)和缺點(diǎn)

第1篇:心理素質(zhì)優(yōu)點(diǎn)和缺點(diǎn)范文

目前,我國(guó)經(jīng)濟(jì)飛速發(fā)展,產(chǎn)業(yè)結(jié)構(gòu)高度化,社會(huì)崗位需求不斷增多,高校擴(kuò)招后畢業(yè)生人數(shù)也逐年增加,然而,由于就業(yè)結(jié)構(gòu)性矛盾不斷加劇,出現(xiàn)招工與就業(yè)“兩難并行”的局面[1]。究其根本原因在于高校培養(yǎng)人才與社會(huì)需求脫節(jié),人才供給與社會(huì)需求錯(cuò)位。作為一所新建的民族地區(qū)高校,河池學(xué)院處于發(fā)展階段,人才培養(yǎng)體系還未完善,畢業(yè)生質(zhì)量與社會(huì)需求尚有較大差距。為了縮短人才培養(yǎng)與社會(huì)需求間的差距,使畢業(yè)生符合社會(huì)需求,需要準(zhǔn)確地了解用人單位對(duì)人才的需求標(biāo)準(zhǔn)。

本文以河池學(xué)院畢業(yè)生追蹤調(diào)查信息數(shù)據(jù)為基礎(chǔ),利用數(shù)據(jù)挖掘技術(shù)對(duì)用人單位評(píng)價(jià)畢業(yè)生的信息數(shù)據(jù)進(jìn)行推測(cè)和估計(jì),探索用人單位錄用畢業(yè)生的規(guī)律及發(fā)展趨勢(shì)[2],找出學(xué)校培養(yǎng)目標(biāo)與社會(huì)需求的差距,為學(xué)校進(jìn)行教育改革,提高畢業(yè)生就業(yè)能力提供依據(jù)。

1 教育數(shù)據(jù)挖掘

數(shù)據(jù)挖掘(Data Mining,DM)是從大量數(shù)據(jù)中尋找規(guī)律的技術(shù),廣泛應(yīng)用到市場(chǎng)推廣、醫(yī)療、房地產(chǎn)、客戶關(guān)系管理、工程、網(wǎng)絡(luò)信息挖掘等各個(gè)領(lǐng)域。在教育領(lǐng)域,越來(lái)越多的研究者使用數(shù)據(jù)挖掘技術(shù)。應(yīng)用在數(shù)據(jù)相關(guān)教育領(lǐng)域的數(shù)據(jù)挖掘技術(shù)稱為教育數(shù)據(jù)挖掘(Education Data Mining,EDM)。教育數(shù)據(jù)挖掘是一種新興的數(shù)據(jù)挖掘技術(shù),側(cè)重于從教育環(huán)境中的數(shù)據(jù)挖掘知識(shí),根據(jù)教育體系中教學(xué)、管理和科研三個(gè)業(yè)務(wù),將教育數(shù)據(jù)挖掘細(xì)分為E-Learning數(shù)據(jù)挖掘、E-Management數(shù)據(jù)挖掘和E-Research數(shù)據(jù)挖掘三個(gè)范疇[3]。E-Management數(shù)據(jù)挖掘使用教育機(jī)構(gòu)數(shù)字化管理系統(tǒng)收錄的數(shù)據(jù),挖掘包括教師績(jī)效評(píng)估、人才引進(jìn)、招生決策、就業(yè)預(yù)測(cè)、畢業(yè)生就業(yè)追蹤等多方面信息,為教育管理部分做出決策提供有效支持。常見(jiàn)的數(shù)據(jù)挖掘方法有決策樹(shù)、神經(jīng)網(wǎng)絡(luò)、樸素貝葉斯、粗糙集、模糊集、K近鄰法、遺傳算法等。綜合Romero[4]和Baker[5]對(duì)教育數(shù)據(jù)挖掘的分類,這些方法可分成統(tǒng)計(jì)分析與可視化、聚類(聚類分析等)、預(yù)測(cè)挖掘(決策樹(shù)等)、關(guān)系挖掘(關(guān)聯(lián)規(guī)則挖掘等)、文本挖掘五類。

2008年,針對(duì)畢業(yè)生和求職人員共存環(huán)境下的就業(yè)問(wèn)題現(xiàn)狀,屈百達(dá)[6]等人建立動(dòng)態(tài)對(duì)策模型,并給出H∞控制解法。通過(guò)求取反饋增益矩陣,得到在職人員、失業(yè)待業(yè)人員數(shù)名的優(yōu)化組合結(jié)構(gòu)關(guān)系,預(yù)測(cè)當(dāng)期畢業(yè)生新增就業(yè)人數(shù),緩解就業(yè)沖突。2009年,劉斕[7]等人轉(zhuǎn)化決策樹(shù)數(shù)據(jù),利用二進(jìn)制關(guān)聯(lián)規(guī)則挖掘算法分析大學(xué)生就業(yè)競(jìng)爭(zhēng)力,提取有效規(guī)則,在培養(yǎng)學(xué)生就業(yè)能力上有一定指導(dǎo)作用。張穩(wěn)[8]等人以新疆農(nóng)業(yè)大學(xué)畢業(yè)生數(shù)據(jù)為例,采用多項(xiàng)式回歸和多元線性回歸兩種不同的算法對(duì)其數(shù)據(jù)建模,實(shí)現(xiàn)對(duì)該校就業(yè)率的預(yù)測(cè)。韋麗梅[9]等人從管理系統(tǒng)和課程設(shè)置的角度出發(fā),經(jīng)過(guò)調(diào)查問(wèn)卷、訪談、座談會(huì)等方式,分析影響中職院校計(jì)算機(jī)類專業(yè)學(xué)生就業(yè)的因素。2010年,針對(duì)畢業(yè)生就業(yè)預(yù)測(cè)存在的不可靠性問(wèn)題,程昌品[10]等人以廣東教育學(xué)院畢業(yè)生就業(yè)情況為例,使用基于信息增益比的決策樹(shù)方法構(gòu)建畢業(yè)生就業(yè)預(yù)測(cè)模型。實(shí)驗(yàn)測(cè)試表明,C4.5決策樹(shù)較ID3算法的預(yù)測(cè)效果有更好的可靠性和健壯性。2011年,牛麗[11]等人提出基于層次分析法和高斯隸屬函數(shù)的模糊綜合評(píng)價(jià)方法,以大學(xué)生就業(yè)能力評(píng)價(jià)的層次性、模糊性為例,評(píng)估大學(xué)生就業(yè)能力。缺點(diǎn)是沒(méi)有和計(jì)算機(jī)結(jié)合建立相應(yīng)的評(píng)價(jià)系統(tǒng)。針對(duì)學(xué)生就業(yè)問(wèn)題中出現(xiàn)噪聲造成不一致數(shù)據(jù)問(wèn)題,常志玲[12]等人提出基于變精度粗糙集的決策樹(shù)模型,分析學(xué)生就業(yè)數(shù)據(jù),簡(jiǎn)化決策樹(shù)結(jié)構(gòu)。賀愛(ài)香[13]等人分析C4.5算法建立流程及結(jié)構(gòu),并以安徽新華學(xué)院畢業(yè)數(shù)據(jù)為基礎(chǔ),運(yùn)用C4.5算法建立應(yīng)用型本科高校就業(yè)模型,并驗(yàn)證模型的正確性和實(shí)用性,為學(xué)校提高就業(yè)率提供決策支持。

綜上所述,大學(xué)生就業(yè)問(wèn)題的研究方法有矩陣模型、決策樹(shù)模型、事務(wù)數(shù)據(jù)庫(kù)模型、管理學(xué)方法。決策樹(shù)模型依賴迭代或遞歸算法[4],原理計(jì)算和實(shí)現(xiàn)較矩陣模型簡(jiǎn)單,建立的決策樹(shù)較事務(wù)數(shù)據(jù)庫(kù)模型易于理解,且比管理學(xué)問(wèn)卷調(diào)查等方法易實(shí)施。由于決策樹(shù)模型能夠?qū)?fù)雜的決策過(guò)程化簡(jiǎn)成簡(jiǎn)單決策的集合,并能夠提供容易解釋的解決方案。被廣泛應(yīng)用于醫(yī)療診斷、專家系統(tǒng)、語(yǔ)音識(shí)別、遙感等各個(gè)領(lǐng)域[14]。

在教育挖掘領(lǐng)域使用這些技術(shù),可以挖掘出很多方面的知識(shí)。本文將以河池學(xué)院畢業(yè)生追蹤調(diào)查信息數(shù)據(jù)為基礎(chǔ),構(gòu)建決策樹(shù)預(yù)測(cè)模型,從用人單位的角度,發(fā)現(xiàn)用人單位錄用畢業(yè)生的潛在標(biāo)準(zhǔn),進(jìn)一步預(yù)測(cè)畢業(yè)生的就業(yè)能力。預(yù)測(cè)目的主要是發(fā)現(xiàn)未被用人單位錄用的畢業(yè)生存在的問(wèn)題。如果在大學(xué)生未畢業(yè)前,預(yù)測(cè)發(fā)現(xiàn)其將不會(huì)被用人單位錄用,學(xué)校就可以找出其原因所在,及時(shí)采取措施,調(diào)整培養(yǎng)計(jì)劃,提高他的就業(yè)能力,并幫助他順利就業(yè)。

2 決策樹(shù)算法

決策樹(shù)是一個(gè)樹(shù)型預(yù)測(cè)模型,代表的是對(duì)象屬性與對(duì)象值之間的一種映射關(guān)系。決策樹(shù)開(kāi)始于一個(gè)根節(jié)點(diǎn)上,樹(shù)中節(jié)點(diǎn)表示某個(gè)對(duì)象;每個(gè)分叉路徑則代表某個(gè)可能的屬性值;葉結(jié)點(diǎn)是從根節(jié)點(diǎn)到該葉節(jié)點(diǎn)的路徑所表示對(duì)象的值。決策樹(shù)是運(yùn)用概率分析進(jìn)行評(píng)估、預(yù)測(cè)的一種樹(shù)型圖解算法,是預(yù)測(cè)分類的一個(gè)重要方法,常用于分析數(shù)據(jù)和評(píng)估預(yù)測(cè)。常用的決策樹(shù)方法有ID3算法、C4.5算法和CART算法等。

2.1 ID3(迭代二叉樹(shù)3代)

ID3是J.Ross Quinlan于1986年在奧卡姆剃刀基礎(chǔ)上開(kāi)發(fā)的,基于信息熵的決策樹(shù)算法。ID3使用信息增益度量選擇分裂屬性,運(yùn)用自頂向下的貪心策略建立決策樹(shù),選擇具有最高信息增益的屬性為根節(jié)點(diǎn),計(jì)算所有屬性可能的值以確定分支、節(jié)點(diǎn)和葉節(jié)點(diǎn)。樹(shù)的建立分兩階段,分別是樹(shù)構(gòu)建和修剪。ID3算法原理如下:

定義1:假設(shè)數(shù)據(jù)集合S有s個(gè)數(shù)據(jù)樣本,類別標(biāo)識(shí)屬性C可分為m個(gè)不同類Ci(i=1,2…,m),設(shè)si為Ci樣本數(shù),則集合S分類的期望信息量為

(1)

式中pi表示Ci類在數(shù)據(jù)集合S中的概率,。

定義2:如果A是集合S的屬性,A有n個(gè)值,則集合S可分為n個(gè)子集Si(i=1,2,…,n),設(shè)sij為子集Si的樣本數(shù),則由屬性A劃分成n個(gè)子集后集合S的信息量為:

(2)

式中E(Si)是屬性A劃分出的子集Si按類別標(biāo)識(shí)屬性分類的信息量,s是集合S的樣本數(shù)。則屬性A分枝上的信息增益為:

Gain(S,A)=E(S)-E(S,A) (3)

迭代計(jì)算每個(gè)屬性的信息增益,選擇信息增益大的屬性為分裂屬性建立決策樹(shù)。

ID3算法不能處理連續(xù)屬性,需要離散化才能使用,在選擇最佳分離屬性的時(shí)候容易選擇那些屬性值多的一些屬性。

2.2 C4.5算法

C4.5算法是ID3的改進(jìn)算法。C4.5采用信息增益率為度量來(lái)選擇決策屬性,克服了用信息增益選擇屬性時(shí)偏向選擇取值多的屬性的不足。C4.5使用悲觀剪枝法,消除不必要的分支,以提高分類的準(zhǔn)確性。該算法在繼承ID3的同時(shí),具有產(chǎn)生的分類規(guī)則易于理解,準(zhǔn)確率較高的優(yōu)點(diǎn),能夠完成對(duì)連續(xù)屬性的離散化和不完整數(shù)據(jù)進(jìn)行處理。信息增益率算法原理如下:

(4)

其中Gain(S,A)為屬性A的增益,由(3)式給出;SplitInfo(S,A)為分裂信息,代表屬性A分裂樣本集的廣度和均勻性。

(5)

2.3 CART(分類與回歸樹(shù))

CART(Classification And Regression Trees)分類算法最早由Breiman 等人提出,已經(jīng)在統(tǒng)計(jì)領(lǐng)域和數(shù)據(jù)挖掘技術(shù)中普遍使用。CART選擇Gini指數(shù)作為測(cè)試屬性,和ID3和C4.5算法不同的是,CART算法生成的決策樹(shù)是結(jié)構(gòu)簡(jiǎn)潔的二叉樹(shù)。CART算法使用后剪枝法,從決策樹(shù)中移除不可靠的分支,以改善精度。CART算法可以同時(shí)處理分類和連續(xù)屬性,也可以處理缺失值。不過(guò),Gini指數(shù)是以分類純度來(lái)劃分節(jié)點(diǎn)的,因此,CART算法最初建立的樹(shù)也有錯(cuò)誤率,因?yàn)橛行┤~子節(jié)點(diǎn)并不是純的。

3 預(yù)測(cè)挖掘過(guò)程

3.1 數(shù)據(jù)預(yù)處理

本文從河池學(xué)院歷年收集的畢業(yè)生追蹤調(diào)查信息中,提取了2009年至2013年用人單位對(duì)河池學(xué)院畢業(yè)生的評(píng)價(jià)信息數(shù)據(jù),經(jīng)與學(xué)校統(tǒng)計(jì)的畢業(yè)生就業(yè)狀況數(shù)據(jù)合并,集成了用人單位對(duì)河池學(xué)院畢業(yè)生的評(píng)價(jià)數(shù)據(jù)集,一共477條評(píng)價(jià)記錄,每條記錄包含的屬性有畢業(yè)生的個(gè)人基本信息,數(shù)據(jù)采集日期,用人單位對(duì)畢業(yè)生德、智、能等方面的評(píng)價(jià)。在這些屬性中,抽取用人單位錄用畢業(yè)生影響較大的4個(gè)屬性,分別為用人單位對(duì)畢業(yè)生評(píng)價(jià)選項(xiàng)中的道德素養(yǎng)、專業(yè)素質(zhì)、實(shí)踐能力和創(chuàng)新能力,加標(biāo)識(shí)屬性“是否錄用”,泛化后形成了如表1所示的數(shù)據(jù)集結(jié)構(gòu)。

各屬性定義如下:

DD(道德素養(yǎng)):包括畢業(yè)生的思想道德、社會(huì)責(zé)任感、團(tuán)隊(duì)合作精神、敬業(yè)精神、心理素質(zhì)等,分為優(yōu)、良、一般、差四個(gè)等級(jí)。

ZY(專業(yè)素質(zhì)):指畢業(yè)生具備的相關(guān)專業(yè)素質(zhì),包括專業(yè)知識(shí)、學(xué)習(xí)新知識(shí)能力、語(yǔ)言表達(dá)能力、計(jì)算機(jī)能力和外語(yǔ)水平等,主要以學(xué)習(xí)綜合成績(jī)來(lái)描述,分為優(yōu)、良、一般、差四個(gè)等級(jí)。

SJ(實(shí)踐能力):指畢業(yè)生的實(shí)踐動(dòng)手能力、獨(dú)立工作能力、人際交往能力、組織管理能力等,分為強(qiáng)、較強(qiáng)、一般、差四個(gè)等級(jí)。

CX(創(chuàng)新能力):指畢業(yè)生創(chuàng)新運(yùn)用知識(shí)和理論的能力,分為強(qiáng)、較強(qiáng)、一般、差四個(gè)等級(jí)。

LY(是否錄用):指畢業(yè)生是否被用人單位錄用,包含被用人單位辭退的畢業(yè)生。分為YES、NO兩種。

集成數(shù)據(jù)集如表2。把數(shù)據(jù)集按年度分為兩個(gè)子數(shù)據(jù)集:其中2009-2012年的385條數(shù)據(jù)記錄作為訓(xùn)練數(shù)據(jù)集,用于預(yù)測(cè)分類建模;2013年的92條數(shù)據(jù)記錄作為測(cè)試數(shù)據(jù)集,用于測(cè)試預(yù)測(cè)模型的準(zhǔn)確度。

3.2 算法選擇

評(píng)價(jià)分類器通常有預(yù)測(cè)準(zhǔn)確度、計(jì)算機(jī)復(fù)雜度和模型描述簡(jiǎn)潔度三方面來(lái)。預(yù)測(cè)準(zhǔn)確度是使用最多的比較尺度,特別是對(duì)于預(yù)測(cè)型分類任務(wù);計(jì)算復(fù)雜度依賴于具體的實(shí)現(xiàn)細(xì)節(jié)和硬件環(huán)境,操作對(duì)象越是巨大的數(shù)據(jù)庫(kù),空間和時(shí)間的復(fù)雜度問(wèn)題越重要;模型描述越簡(jiǎn)潔越受歡迎,尤其是對(duì)于描述型的分類任務(wù)。目前普遍認(rèn)為,同時(shí)適用于各種特點(diǎn)數(shù)據(jù)的分類器是不存在的。

C4.5算法具有準(zhǔn)確率較高、模型描述簡(jiǎn)單和產(chǎn)生分類規(guī)則易于理解的優(yōu)點(diǎn)。根據(jù)本文數(shù)據(jù)的特性和挖掘任務(wù),選用C4.5算法作為本文數(shù)據(jù)預(yù)測(cè)挖掘算法。

3.3 C4.5預(yù)測(cè)模型構(gòu)建

訓(xùn)練數(shù)據(jù)集合中屬性“LY(是否錄用)”為類別標(biāo)識(shí)屬性,其他DD(道德素養(yǎng))、ZY(專業(yè)素質(zhì))、SJ(實(shí)踐能力)和CX(創(chuàng)新能力)為決策屬性。類別標(biāo)識(shí)屬性“LY(是否錄用)”有385個(gè)值,其中“YES”319個(gè),“NO”66個(gè),則集合分類的期望信息量為:

3.3.1 計(jì)算決策屬性的信息量

對(duì)屬性DD(道德素養(yǎng))

當(dāng)DD(道德素養(yǎng))=“優(yōu)”時(shí),有153個(gè)值:153個(gè)“YES”,0個(gè)“NO”,則

當(dāng)DD(道德素養(yǎng))=“良”時(shí),有92個(gè)值:92個(gè)“YES”,0個(gè)“NO”,則

當(dāng)DD(道德素養(yǎng))=“一般”時(shí),有74個(gè)值:53個(gè)“YES”,21個(gè)“NO”,則

當(dāng)DD(道德素養(yǎng))=“差”時(shí),有66個(gè)值:21個(gè)“YES”,45個(gè)“NO”,則

由此得出屬性“DD(道德素養(yǎng))”的信息量

3.3.2 計(jì)算決策屬性的信息增益

屬性DD(道德素養(yǎng))的信息增益為:

Gain(S,DD)=E(S)-E(S,DD)=0.6610-0.3201=0.3409

3.3.3計(jì)算決策屬性的信息增益率

屬性DD(道德素養(yǎng))的分裂信息為:

所以屬性DD(道德素養(yǎng))的信息增益率為:

同理可計(jì)算出屬性ZY(專業(yè)素質(zhì))、SJ(實(shí)踐能力)、CX(創(chuàng)新能力)的信息增益率,分別為

GainRatio(S,ZY)=0.0755

GainRatio(S,SJ)=0.0260

GainRatio(S,CX)=0.0055

3.3.4 確定根節(jié)點(diǎn)

比較屬性DD(道德素養(yǎng))、ZY(專業(yè)素質(zhì))、SJ(實(shí)踐能力)、CX(創(chuàng)新能力)四個(gè)屬性的信息增益率,屬性DD(道德素養(yǎng))具有最大信息增益,所以選擇DD(道德素養(yǎng))作為測(cè)試屬性,得到如圖1所示的決策樹(shù)根節(jié)點(diǎn)。

3.3.5 建立決策樹(shù)

屬性DD(道德素養(yǎng))為根節(jié)點(diǎn)時(shí),得到“優(yōu)”、“良”、“一般”和“差”四個(gè)分支,利用遞歸方法,對(duì)每個(gè)分支迭代計(jì)算信息增益率,最后得出決策樹(shù),如圖2。

通過(guò)上述計(jì)算方法得到的決策樹(shù),詳細(xì)而龐大,每個(gè)屬性都被詳細(xì)地加以考慮,是一顆完美的樹(shù),但實(shí)用性差,存在過(guò)擬合現(xiàn)象,實(shí)際使用中會(huì)導(dǎo)致數(shù)據(jù)失真。因此,需要對(duì)決策樹(shù)進(jìn)行剪枝,采用悲觀剪枝法剪枝后決策樹(shù)如圖3。

3.4 ID3、C4.5和CART比較

WEKA是一個(gè)集合了ID3、 C4.5和CART等機(jī)器學(xué)習(xí)算法的開(kāi)源應(yīng)用軟件,廣泛應(yīng)用于數(shù)據(jù)挖掘。導(dǎo)入訓(xùn)練數(shù)據(jù)集,在WEKA平臺(tái)分別建立基于十折交叉驗(yàn)證評(píng)估方法的ID3、C4.5和CART分類器。比較結(jié)果如表3、表4和表5。

從以上比較可以看出,準(zhǔn)確度最高和計(jì)算時(shí)間最少的分類器是C4.5。雖然C4.5分類器對(duì)類“YES”分類準(zhǔn)確度稍低于ID3和CART,但C4.5分類器對(duì)類“NO”分類準(zhǔn)確度最高,且C4.5分類器對(duì)類“YES”和“NO”分類準(zhǔn)確度相差最小,說(shuō)明C4.5分類器對(duì)噪聲數(shù)據(jù)正確預(yù)測(cè)能力較強(qiáng)。綜合上述比較,在本文的數(shù)據(jù)挖掘研究中,C4.5分類器優(yōu)于ID3和CART。

3.5 測(cè)試C4.5分類器

用測(cè)試數(shù)據(jù)集代入C4.5分類器進(jìn)行測(cè)試,準(zhǔn)確測(cè)出90條記錄,2條記錄預(yù)測(cè)錯(cuò)誤,準(zhǔn)確率達(dá)到97.8261%,如表6。

預(yù)測(cè)模型對(duì)“YES”類的預(yù)測(cè)準(zhǔn)確率達(dá)98.7%, 對(duì)“NO”類預(yù)測(cè)準(zhǔn)確率達(dá)92.9%,如表7。

從測(cè)試結(jié)果看,建立的分類器預(yù)測(cè)精度較高,預(yù)測(cè)已錄用(YES)類準(zhǔn)確率高于未錄用(NO)。把預(yù)測(cè)結(jié)果和學(xué)校歷年的就業(yè)統(tǒng)計(jì)數(shù)據(jù)相比較,結(jié)果基本相符。

3.6 C4.5分類器規(guī)則

通過(guò)以上測(cè)試和評(píng)價(jià),C4.5預(yù)測(cè)模型能較地應(yīng)用本文數(shù)據(jù)挖掘分類預(yù)測(cè),且有較高預(yù)測(cè)準(zhǔn)確度。根據(jù)圖3所示決策樹(shù)得出以下預(yù)測(cè)分類規(guī)則:

(1)IF DD(道德素養(yǎng))=“優(yōu)”O(jiān)R DD(道德素養(yǎng))=“良” THEN LY(是否錄用)=“YES”。

(2)IF DD(道德素養(yǎng))=“一般” AND ZY(專業(yè)素質(zhì))=“優(yōu)”THEN LY(是否錄用)=“YES”。

(3)IF DD(道德素養(yǎng))=“一般” AND ZY(專業(yè)素質(zhì))= “良” THEN LY(是否錄用)=“YES”。

(4)IF DD(道德素養(yǎng))=“一般” AND ZY(專業(yè)素質(zhì))= “一般” THEN LY(是否錄用)=“YES”。

(5)IF DD(道德素養(yǎng))=“一般”AND ZY(專業(yè)素質(zhì))=“差” THEN LY(是否錄用)=“NO”。

(6)IF DD(道德素養(yǎng))=“差”AND ZY(專業(yè)素質(zhì))=“優(yōu)” AND SJ(實(shí)踐能力)=“強(qiáng)”THEN LY(是否錄用)=“YES”。

(7)IF DD(道德素養(yǎng))=“差”AND ZY(專業(yè)素質(zhì))=“優(yōu)” AND SJ(實(shí)踐能力)=“較強(qiáng)” THEN LY(是否錄用)=“YES”。

(8)IF DD(道德素養(yǎng))=“差”AND ZY(專業(yè)素質(zhì))=“優(yōu)” AND SJ(實(shí)踐能力)=“一般” THEN LY(是否錄用)=“YES”。

(9)IF DD(道德素養(yǎng))=“差”AND ZY(專業(yè)素質(zhì))=“優(yōu)” AND SJ(實(shí)踐能力)=“差” THEN LY(是否錄用)=“NO”。

(10)IF DD(道德素養(yǎng))=“差”AND ZY(專業(yè)素質(zhì))=“良” AND SJ(實(shí)踐能力)=“強(qiáng)” THEN LY(是否錄用)=“YES”。

(11)IF DD(道德素養(yǎng))=“差”AND ZY(專業(yè)素質(zhì))=“良” AND SJ(實(shí)踐能力)=“較強(qiáng)” THEN LY(是否錄用)=“YES”。

(12)IF DD(道德素養(yǎng))=“差”AND ZY(專業(yè)素質(zhì))=“良” AND SJ(實(shí)踐能力)=“一般” THEN LY(是否錄用)=“NO”。

(13)IF DD(道德素養(yǎng))=“差”AND ZY(專業(yè)素質(zhì))=“良” AND SJ(實(shí)踐能力)=“差” THEN LY(是否錄用)=“NO”。

(14)IF DD(道德素養(yǎng))=“差”AND ZY(專業(yè)素質(zhì))=“一般” THEN LY(是否錄用)=“NO”。

(15)IF DD(道德素養(yǎng))=“差”AND ZY(專業(yè)素質(zhì))=“差” THEN LY(是否錄用)=“NO”。

分析以上分類規(guī)則可以得出,道德素養(yǎng)好、專業(yè)素質(zhì)優(yōu)秀、實(shí)踐能力較強(qiáng)的畢業(yè)生,符合用人單位錄用標(biāo)準(zhǔn),能順利就業(yè);如果道德素養(yǎng)較差,則須在畢業(yè)生的專業(yè)素質(zhì)和實(shí)踐能力上較為優(yōu)秀,用人單位才會(huì)錄用;對(duì)于道德素養(yǎng)和專業(yè)素質(zhì)都較差的畢業(yè)生,用人單位一般不會(huì)錄用。

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

AI写作,高效原创

在线指导,快速准确,满意为止

立即体验
文秘服务 AI帮写作 润色服务 论文发表