公務(wù)員期刊網(wǎng) 精選范文 分類討論的數(shù)學(xué)思想方法范文

分類討論的數(shù)學(xué)思想方法精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的分類討論的數(shù)學(xué)思想方法主題范文,僅供參考,歡迎閱讀并收藏。

分類討論的數(shù)學(xué)思想方法

第1篇:分類討論的數(shù)學(xué)思想方法范文

目前,初中數(shù)學(xué)教學(xué)內(nèi)容、教學(xué)過程存在較多的問題:如過分重視按照邏輯體系編排,重知識(shí)傳授,輕實(shí)際應(yīng)用;重結(jié)果,輕過程;強(qiáng)調(diào)統(tǒng)一性,忽視差異性;教材內(nèi)容偏窄偏深?,F(xiàn)有課堂教學(xué)也存在著許多弊病,例如教學(xué)程式化、教學(xué)缺乏變通性和靈活性、教條化、單一化、靜態(tài)化等問題導(dǎo)致學(xué)生學(xué)習(xí)興趣索然,學(xué)習(xí)被動(dòng),產(chǎn)生厭學(xué)心理,造成數(shù)學(xué)差生面大。另一方面,教師總想提高差生的成績,給學(xué)生布置大量的作業(yè),加重了學(xué)生的負(fù)擔(dān),效果卻并不理想。

當(dāng)今社會(huì)科學(xué)技術(shù)高速發(fā)展,高科技的競爭已成為世界性和全方位的科技競爭焦點(diǎn),而高科技的競爭必然導(dǎo)致知識(shí)密集化,技術(shù)綜合化,方法系統(tǒng)化。面對(duì)高科技對(duì)人才培養(yǎng)提出的新要求,面對(duì)初中數(shù)學(xué)的教學(xué)實(shí)際,初中數(shù)學(xué)教學(xué)如何才能提高課堂教學(xué)質(zhì)量,減輕學(xué)生負(fù)擔(dān),使學(xué)生學(xué)會(huì)數(shù)學(xué)的思考和解決問題,能把知識(shí)的學(xué)習(xí)和能力的培養(yǎng)、智力的發(fā)展有機(jī)地聯(lián)系起來呢?一方面,重視數(shù)學(xué)思想方法的培養(yǎng),可以改善數(shù)學(xué)教學(xué)低效狀況。另一方面,重視初中數(shù)學(xué)思想方法的培養(yǎng)也符合新科技時(shí)代對(duì)人才素質(zhì)的要求。

從教育的角度來看,數(shù)學(xué)思想方法比數(shù)學(xué)知識(shí)更為重要,這是因?yàn)椋簲?shù)學(xué)知識(shí)是定型的,靜態(tài)的,而思想方法則是發(fā)展的,動(dòng)態(tài)的,知識(shí)的記憶是暫時(shí)的,思想方法的掌握是永久的,知識(shí)只能使學(xué)生受益于一時(shí),思想方法將使學(xué)生受益于終生。增強(qiáng)數(shù)學(xué)思想方法的培養(yǎng)比知識(shí)的傳授更為重要,數(shù)學(xué)思想方法的掌握對(duì)任何實(shí)際問題的解決都是有利的。因此,數(shù)學(xué)教學(xué)必須重視數(shù)學(xué)思想方法的教學(xué)。

實(shí)踐證明,培養(yǎng)初中生的數(shù)學(xué)思想方法,有效地激發(fā)了學(xué)生的學(xué)習(xí)興趣,充分調(diào)動(dòng)了學(xué)生學(xué)習(xí)積極性和主動(dòng)性,能使學(xué)生的認(rèn)知結(jié)構(gòu)不斷地完善和發(fā)展,使學(xué)生將已有的思想方法運(yùn)用在學(xué)習(xí)新知識(shí)的過程中,能夠把復(fù)雜問題轉(zhuǎn)化為簡單問題來解決,提高學(xué)習(xí)效益,提高學(xué)生分析問題和解決問題的能力。目前,數(shù)形結(jié)合思想、分類討論思想、方程與函數(shù)思想是各地試卷考查的重點(diǎn),因此,也應(yīng)注重初中生數(shù)學(xué)思想方法的培養(yǎng),考查學(xué)生的數(shù)學(xué)思想方法是考查學(xué)生能力的必由之路。

二、怎樣培養(yǎng)初中生的數(shù)學(xué)思想方法

(一)數(shù)學(xué)思想方法的培養(yǎng)應(yīng)遵循的原則

1. 滲透性原則

九年制義務(wù)教育教材的編排是按知識(shí)的邏輯縱向展開的。大量的數(shù)學(xué)思想方法是蘊(yùn)涵在數(shù)學(xué)知識(shí)之中,因此,在具體知識(shí)的教學(xué)中,精心設(shè)計(jì)學(xué)習(xí)情境與教學(xué)過程,著意引導(dǎo)學(xué)生領(lǐng)會(huì)蘊(yùn)含在其中的數(shù)學(xué)思想和方法,使它們?cè)跐撘颇羞_(dá)到理解和掌握。

2 . 層次性原則

要使學(xué)生把握數(shù)學(xué)方法,首先教師要準(zhǔn)確、清晰地把握好初中數(shù)學(xué)教材中的數(shù)學(xué)思想方法的水平層次。一要把握好學(xué)生認(rèn)知數(shù)學(xué)思想方法的水平層次;對(duì)初中數(shù)學(xué)方法可分為了解、理解、掌握三個(gè)層次。了解:對(duì)數(shù)學(xué)思想方法的含義有感性的初步的認(rèn)識(shí),能在有關(guān)的問題中識(shí)別它們。理解:對(duì)數(shù)學(xué)思想方法達(dá)到了理性認(rèn)識(shí),不僅能夠說出它們是什么,而且能夠知道它們的基本觀點(diǎn),有什么用途。掌握:在理解的基礎(chǔ)上,通過訓(xùn)練掌握其實(shí)質(zhì),能用它去解決一些問題。二要把握好某一數(shù)學(xué)方法在不同教材、不同階段的水平層次。同一種數(shù)學(xué)思想方法在不同的年級(jí)(或不同的章節(jié))中,要求的層次也不相同。

3. 反復(fù)性原則

從一個(gè)較長的學(xué)習(xí)過程看,學(xué)生對(duì)各種數(shù)學(xué)思想方法的認(rèn)識(shí)都是在反復(fù)理解和運(yùn)用中形成的,其間有一個(gè)低級(jí)到高級(jí)的螺旋上升過程,如對(duì)同一數(shù)學(xué)思想方法,應(yīng)該注意在不同知識(shí)階段的再現(xiàn),加強(qiáng)對(duì)數(shù)學(xué)思想方法的認(rèn)識(shí)。

學(xué)生接觸較多的數(shù)學(xué)問題后,數(shù)學(xué)思想方法的學(xué)習(xí)逐漸過渡到初步應(yīng)用階段,開始理解解題過程中所使用的探索方法和策略,也能夠概括總結(jié)出來。

(二)在知識(shí)的傳授過程中,注重培養(yǎng)學(xué)生的數(shù)學(xué)思想

數(shù)學(xué)思想是形成數(shù)學(xué)能力、數(shù)學(xué)意識(shí)的橋梁,是靈活運(yùn)用數(shù)學(xué)知識(shí)的技能、方法的靈魂,因此,在運(yùn)用知識(shí)的全過程中,從分析探求思路,到優(yōu)化實(shí)施解答,最后反思驗(yàn)證結(jié)論都要重視應(yīng)用數(shù)學(xué)思想。

1. 對(duì)概念掌握過程和公式定理證明中滲透數(shù)學(xué)思想

中學(xué)數(shù)學(xué)教材中處處滲透著基本數(shù)學(xué)思想方法,數(shù)學(xué)概念、公式、法則等知識(shí)寫在教材中,是有“形”的,而基本的數(shù)學(xué)思想方法在教材中是無“形”的。它以隱藏的形式存在于字里行間,并且不成體系散見于教材各章節(jié)之中,需要通過教師的指點(diǎn),學(xué)生才能領(lǐng)會(huì)、掌握。通過對(duì)公式定理證明,把掌握的概念運(yùn)用的實(shí)踐當(dāng)中,這個(gè)過程中滲透數(shù)學(xué)思想也加深了概念的理解。

2. 在例題教學(xué)中滲透數(shù)學(xué)思想

分類思想的培養(yǎng)要通過學(xué)生對(duì)具體數(shù)學(xué)問題的處理,因此,在例題教學(xué)中,要引導(dǎo)學(xué)生應(yīng)用分類思想探索某些問題的解題方法,訓(xùn)練學(xué)生的分類技能,同時(shí)安排相應(yīng)的題型進(jìn)行訓(xùn)練。初中課本中有不少定理、法則、公式、習(xí)題,都需要分類討論,在教授這些內(nèi)容時(shí),應(yīng)不斷強(qiáng)化學(xué)生分類討論的意識(shí),讓學(xué)生認(rèn)識(shí)到這些問題,只有通過分類討論后,得到的結(jié)論才是完整的、正確的,如不分類討論,就很容易出現(xiàn)錯(cuò)誤。在解題教學(xué)中,通過分類討論還有利于幫助學(xué)生概括,總結(jié)出規(guī)律性的東西,從而加強(qiáng)學(xué)生思維的條理性,縝密性。

一般來講,利用分類討論思想和方法解決的問題有兩大類:其一是涉及代數(shù)式或函數(shù)或方程中,根據(jù)字母不同的取值情況,分別在不同的取值范圍內(nèi)討論解決問題。其二是根據(jù)幾何圖形的點(diǎn)和線出現(xiàn)不同位置的情況,逐一討論解決問題。在平時(shí)的練習(xí)過程中滲透數(shù)學(xué)思想,在鞏固練習(xí)過程中,進(jìn)一步滲透分類思想。

(三)培養(yǎng)學(xué)生自覺應(yīng)用數(shù)學(xué)思想方法解決實(shí)際問題的能力

第2篇:分類討論的數(shù)學(xué)思想方法范文

【關(guān)鍵詞】數(shù)學(xué);分類思想方法;教學(xué)

數(shù)學(xué)思想方法與其他的數(shù)學(xué)思想方法一樣,是探究、解決問題的重要的思想方法。在探究、解決問題中正確地運(yùn)用數(shù)學(xué)分類思想方法能化繁為簡,化難為易;能使思維有序、全面、縝密;對(duì)于提升學(xué)生的思維品質(zhì)和提高學(xué)生分析問題和解決的題的能力起到積極的促進(jìn)作用。下面就分類思想方法的意義、原則、作用和步驟;初中數(shù)學(xué)教材中運(yùn)用分類思想方法進(jìn)行教學(xué)的主要內(nèi)容;初中數(shù)學(xué)分類思想方法教學(xué)的三個(gè)階段等三個(gè)方面談?wù)剛€(gè)人的看法。

一、分類思想方法的意義、原則、作用和步驟

1、分類思想方法的意義。 將研究對(duì)象按照一定的標(biāo)準(zhǔn),劃分成幾個(gè)部分,逐一進(jìn)行研究和解決的方法叫做分類討論。其實(shí)質(zhì):“化整為零,各個(gè)擊破,再積零為整”的策略。

2、分類的原則。劃分后的各個(gè)子項(xiàng)應(yīng)當(dāng)互不相容(不重);劃分后的子項(xiàng)應(yīng)當(dāng)窮盡母項(xiàng)(不漏);每次劃分都應(yīng)按同一標(biāo)準(zhǔn)。

3、分類的作用??苫睘楹?,化難為易;可使思維有序,有條理;可使思維全面、縝密。

4、分類討論的步驟。確定同一分類的標(biāo)準(zhǔn);恰當(dāng)?shù)陌褜?duì)象整體進(jìn)行分類;分類要做到“不重、不漏”;討論要按一定的層次逐類逐級(jí)進(jìn)行,最后概括小結(jié)、歸納,得出問題的結(jié)論。確定分類標(biāo)準(zhǔn)是分類討論的重要一環(huán)。

二、初中數(shù)學(xué)教材中運(yùn)用分類思想方法進(jìn)行教學(xué)的主要內(nèi)容

1、運(yùn)用分類思想方法進(jìn)行數(shù)、式教學(xué)的內(nèi)容有理數(shù)的分類,相反數(shù),絕對(duì)值,大小的比較,運(yùn)法則;數(shù)的分類,平方根,立方根,無理數(shù)的形式;式的分類,式加減,二次根式的化簡等。

2、運(yùn)用分類思想方法進(jìn)行方程與不等式(組)教學(xué)的內(nèi)容方程的分類,不等式的性質(zhì),不等式(組)的解集,一元二次方程的解法等。

3、運(yùn)用分類思想方法進(jìn)行函數(shù)教學(xué)的內(nèi)容。特殊點(diǎn)的坐標(biāo),分段函數(shù)、一次函數(shù)、反比例函數(shù)、二次函數(shù)的圖像和性質(zhì)等。

4、運(yùn)用分類思想方法進(jìn)行圖形認(rèn)識(shí)教學(xué)的內(nèi)容。線的分類,面的分類,垂線性質(zhì),三線八角,三角形按邊(角)的分類,三角形高的位置,三角形外心的位置,三角形全等的條件,等腰三角形邊與角的計(jì)算,勾股定理的應(yīng)用,四邊形的分類,弧的分類,點(diǎn)與圓的位置關(guān)系,直線與圓的位置關(guān)系,圓與圓的位置關(guān)系,圓周角定理等。

5、運(yùn)用分類思想方法進(jìn)行圖形與變換教學(xué)的內(nèi)容。相似三角形的對(duì)應(yīng)關(guān)系、三角形相似的條件,相似多邊形的性質(zhì),相似三角形性的質(zhì),位似中心的位置等。

三、初中數(shù)學(xué)分類思想方法教學(xué)的三個(gè)階段

1、抓住時(shí)機(jī),滲透分類思想。

(1)在概念教學(xué)中,滲透分類的思想。有些數(shù)學(xué)概念是由分類給出的,一般按概念的分類形式進(jìn)行分類。例如,有理數(shù)意義教學(xué):整數(shù)、分?jǐn)?shù)統(tǒng)稱為有理數(shù)或正數(shù)、負(fù)數(shù)、零統(tǒng)稱為有理數(shù)。

(2)在法則探究中,滲透分類思想方法。例如,有理數(shù)的加法法則的探究,可分為:同號(hào)兩數(shù)相加;異號(hào)兩數(shù)相加;一個(gè)數(shù)同零相加三種情形:

①(+2)+(+1)=+(2+1)=+3, (-2)+(-1)=-(2+1)=-3;

②(+2)+(-1)=+(2-1)=+1, (-2)+(+1)=-(2-1)=-1;

(+2)+(-2)=0;

③(+2)+0=+2, (-2)+0=-2,0+0=0.

最后歸納出有理數(shù)的加法法則。

(3)在圖形求解中,滲透分類思想方法。例如,等腰三角形的兩邊分別是3、4,求它的周長。分析:根據(jù)等腰三角形的腰可分為:當(dāng)3為腰時(shí),則4就是底邊;當(dāng)4為腰時(shí),則3就是底邊二種情形:

①當(dāng)3為腰時(shí),則4就是底邊,此時(shí)等腰三角形的周長為10;

②當(dāng)4為腰時(shí),則3就是底邊,等腰三角形的此時(shí)等腰三角形的周長為11。

2、啟發(fā)誘導(dǎo),揭示分類思想方法的本質(zhì)。

(1)根據(jù)問題的需要,進(jìn)行分類。

例如,解關(guān)于x的不等式:mx>-1

分析:據(jù)不等式的性質(zhì)可分為m>0,m=0和m

①當(dāng)m>0時(shí),不等式的解為x>-1/ m;

②當(dāng)m=0時(shí),不等式左邊=0,右邊=-1,因?yàn)?乘任何數(shù)得0,0>-1,此不等式解集為一切實(shí)數(shù);

③當(dāng)m

(2)分類要求明確的標(biāo)準(zhǔn)。例如,一元二次方程ax2+bx+c=0(a≠0)根的探究,可按根的情況分為:兩個(gè)不相等的實(shí)數(shù)根;兩個(gè)相等的實(shí)數(shù)根;沒有實(shí)數(shù)根等三種情況來討論。

3、深化探究,運(yùn)用分類的思想方法研究問題。

(1)根據(jù)字母的取值范圍進(jìn)行分類。例如,已知函數(shù)y=kx2+(k-1)x-1(k是實(shí)數(shù)),如果函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求k的值。

分析:這里可從函數(shù)分類的角度討論,分k=0和k≠0兩種情況解決問題。

解:①當(dāng)k=0時(shí),函數(shù)就是一個(gè)一次函數(shù),y=-x-1,它與x軸只有一個(gè)交點(diǎn)(-1,0)。

②當(dāng)k≠1時(shí),函數(shù)就是一個(gè)二次函數(shù),y=kx2+(k-1)x-1,當(dāng)=(k-1)2-4×k×(-1)=0,得k=-1,拋物線y=-x2-2x-1的頂點(diǎn)(-1,0)在x軸上。

第3篇:分類討論的數(shù)學(xué)思想方法范文

關(guān)鍵詞:數(shù)學(xué)新課程;分類討論;再認(rèn)識(shí)

中圖分類號(hào):G633.6文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1009-010X(2012)04-0055-03

全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)要求,“通過義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會(huì)生活和進(jìn)一步發(fā)展所必需的數(shù)學(xué)的基礎(chǔ)知識(shí)、基本技能、基本思想、基本活動(dòng)經(jīng)驗(yàn)”。分類討論作為最基本的數(shù)學(xué)思想方法之一,它既是一種重要的數(shù)學(xué)思想,又是一種重要的解題方法。在新課程實(shí)施中,教師根據(jù)學(xué)生的年齡特征、認(rèn)知規(guī)律和知識(shí)積累,在遵循科學(xué)性前提下,采用逐級(jí)遞進(jìn)、螺旋上升的原則,向?qū)W生適時(shí)滲透分類討論的數(shù)學(xué)思想,對(duì)于發(fā)展學(xué)生的思維能力、養(yǎng)成良好的數(shù)學(xué)思維習(xí)慣有著重要的意義。

一、什么是分類討論思想

分類討論是指當(dāng)問題所給的對(duì)象不能進(jìn)行統(tǒng)一研究時(shí),需要對(duì)研究對(duì)象按某個(gè)標(biāo)準(zhǔn)進(jìn)行分類,然后逐類討論,最后綜合各類結(jié)果得到整個(gè)問題的答案。像這種先分類再討論,把問題“分而治之,各個(gè)擊破”的解決問題的思想就是分類討論思想。

二、分類討論思想在新課程實(shí)施中的地位和作用

數(shù)學(xué)課程標(biāo)準(zhǔn)指出:“數(shù)學(xué)思想蘊(yùn)涵在數(shù)學(xué)知識(shí)形成、發(fā)展和應(yīng)用的過程中,是數(shù)學(xué)知識(shí)和方法在更高層次上的抽象與概括,如歸納、演繹、抽象、轉(zhuǎn)化、分類、模型、數(shù)形結(jié)合、隨機(jī)等。學(xué)生在積極參與教學(xué)活動(dòng)的過程中,通過獨(dú)立思考、合作交流,逐步積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)、感悟數(shù)學(xué)思想”。分類討論思想作為一種基本的數(shù)學(xué)思想,在學(xué)生基礎(chǔ)知識(shí)的獲得,基本技能的形成,數(shù)學(xué)素養(yǎng)的提高,思維能力的發(fā)展,創(chuàng)新意識(shí)和實(shí)踐能力的培養(yǎng)方面占有非常重要的地位。按照數(shù)學(xué)課程標(biāo)準(zhǔn)的要求,在學(xué)生學(xué)習(xí)活動(dòng)中,積極引導(dǎo)學(xué)生通過實(shí)踐、思考、探索、交流等方式,讓學(xué)生在獲得知識(shí)、形成技能、發(fā)展思維的同時(shí),借助數(shù)學(xué)知識(shí)的載體功能,將分類討論思想向?qū)W生逐級(jí)滲透,螺旋上升,逐步積累,不斷完善,對(duì)于培養(yǎng)學(xué)生思維的條理性、嚴(yán)謹(jǐn)性和完整性,養(yǎng)成縝密思考的良好品質(zhì),提高和發(fā)展學(xué)生的思維能力有著舉足輕重的作用。

三、分類討論的基本原則

分類討論思想的核心是對(duì)問題進(jìn)行合理分類,要做到合理分類,需遵循分類討論的四個(gè)基本原則:

(一)同一性原則

分類必須按確定的同一標(biāo)準(zhǔn)進(jìn)行,不能同時(shí)使用幾個(gè)不同的分類標(biāo)準(zhǔn),否則會(huì)導(dǎo)致分類的混亂。

例如:三角形 銳角三角形等腰直角三角形等邊三角形鈍角三角形

顯然,以上對(duì)三角形分類時(shí),既按邊又按角同時(shí)使用了兩個(gè)標(biāo)準(zhǔn)進(jìn)行分類,造成了分類的混亂。

(二)完備性原則

分類應(yīng)當(dāng)完整,即分類后子項(xiàng)的外延之和應(yīng)等于母項(xiàng)的外延,而不能出現(xiàn)分類后母項(xiàng)外延的遺漏。

例如:若a為實(shí)數(shù),則a= a(a>0)a(a0)

很明顯,分類后丟掉了a=0的情況,造成分類后子項(xiàng)的外延出現(xiàn)了遺漏,導(dǎo)致分類不完整。

(三)互斥性原則

分類后的每個(gè)子項(xiàng)都應(yīng)當(dāng)互不相容,相互排斥,不能出現(xiàn)分類后一些事物既屬于這個(gè)子項(xiàng)又屬于那個(gè)子項(xiàng),造成子項(xiàng)外延的重疊。

例如:若a為實(shí)數(shù),則a= a(a≥0)a(a≤0)

這里,分類后兩個(gè)子項(xiàng)就出現(xiàn)了a=0在外延上的重疊,違背了子項(xiàng)外延互斥性原則。

(四)逐級(jí)性原則

有些數(shù)學(xué)問題只需一次性分類,有些數(shù)學(xué)問題則需多次分類。多次分類是由于被討論對(duì)象比較復(fù)雜,需把首次分類后的子項(xiàng)作為新的母項(xiàng)再進(jìn)行分類,直至滿足需要為止,進(jìn)而達(dá)到解決整個(gè)問題的目的。

例如:論證方程(a-1)x2+2x-6=0的實(shí)數(shù)根的情況。

解:當(dāng)a-1=0即a=1時(shí),方程為一元一次方程,其實(shí)數(shù)根為x=3

當(dāng)a-1≠0即a≠1時(shí),方程為一元二次方程,其實(shí)數(shù)根為

當(dāng)>0即a>■時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根當(dāng)= 0 即a=■時(shí), 方程有兩個(gè)相等的實(shí)數(shù)根當(dāng)<0即a<■時(shí), 方程沒有實(shí)數(shù)根

綜上所述,當(dāng)a=1時(shí),方程有唯一一個(gè)實(shí)數(shù)根。

當(dāng)a>■且a≠1時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

當(dāng)a=■時(shí),方程有兩個(gè)相等的實(shí)數(shù)根。

當(dāng) a<■時(shí),方程沒有實(shí)數(shù)根。

四、分類討論的一般步驟和結(jié)論歸納形式

分類討論的一般步驟是:①確定分類討論的對(duì)象及被討論對(duì)象的全域;②確定分界點(diǎn),統(tǒng)一分類標(biāo)準(zhǔn),合理進(jìn)行分類,并做到不重不漏,分層而不越級(jí);③逐類討論,分級(jí)進(jìn)行;④綜合歸納,得出結(jié)論。

分類討論的結(jié)論歸納形式一般有三種:

①并列形式。格式為:當(dāng)……時(shí),有……;

當(dāng)……時(shí),有……。

②并集形式。格式為:……或……。

③交集形式。格式為:……且……。

五、分類討論的常見類型

引起分類討論的因素較多,但常見的類型主要有以下幾種:

1.根據(jù)定義、性質(zhì)、法則、公式、定理進(jìn)行分類討論;

2.根據(jù)運(yùn)算的要求進(jìn)行分類討論;

3.根據(jù)圖形的形狀或位置變化進(jìn)行分類討論;

4.當(dāng)條件或結(jié)論開放時(shí)進(jìn)行分類討論;

5.當(dāng)問題中條件較少,需通過分類來補(bǔ)充條件時(shí)進(jìn)行分類討論。

六、學(xué)生在分類討論中存在的問題

(一)在分析問題時(shí),缺乏分類討論的意識(shí)

例如:已知等腰三角形的兩邊長為8和6,求這個(gè)三角形的周長。

錯(cuò)解:等腰三角形的周長為8+8+6=22

分析:學(xué)生初解該類型題時(shí),常因缺乏分類討論的意識(shí),僅考慮腰為8或腰為6中的某一種情況,而得出周長為22或20的單一性答案,造成問題丟解。

正解:當(dāng)腰長為8時(shí),等腰三角形周長為8+8+6=22

當(dāng)腰長為6時(shí),等腰三角形周長為6+6+8=20

所以,等腰三角形的周長是22或20.

(二)有分類討論的意識(shí),但在分類時(shí)存在盲目性

分類討論的關(guān)鍵是確定分類標(biāo)準(zhǔn),學(xué)生分類時(shí)常因不能準(zhǔn)確找到分類標(biāo)準(zhǔn)的分界點(diǎn),導(dǎo)致對(duì)問題盲目分類,出現(xiàn)求解上的失誤。

例如:如圖,一個(gè)等邊三角形的邊長和與它一邊相切的圓的周長相等,當(dāng)這個(gè)圓按箭頭方向從某一位置沿等邊三角形的三邊做無滑動(dòng)旋轉(zhuǎn),直到回到原出發(fā)位置時(shí),該圓自轉(zhuǎn)了( )圈。

(A)2 (B)3 (C)4(D)5

錯(cuò)解:選(B) 正解:選(C)

分析:因?yàn)閳A與等邊三角形相切且做無滑動(dòng)旋轉(zhuǎn),很多學(xué)生盲目認(rèn)為按圓在AB邊、BC邊、CA邊上分類討論即可,因?yàn)檫呴L等于圓的周長,所以經(jīng)過一條邊剛好轉(zhuǎn)了1圈,在三條邊旋轉(zhuǎn)當(dāng)然轉(zhuǎn)了3圈,故選(B)。然而卻忽略了圓在頂點(diǎn)B、C、A處旋轉(zhuǎn)的情況,由圖(2)不難分析,圓經(jīng)過一個(gè)頂點(diǎn)時(shí)旋轉(zhuǎn)了120°,經(jīng)過三個(gè)頂點(diǎn)共轉(zhuǎn)了

120°×3=360°恰好為一圈,所以應(yīng)選(C)。

(三)在分類討論時(shí)存在主觀臆斷性

在分析數(shù)學(xué)問題時(shí),一般當(dāng)遇到數(shù)量的大小或符號(hào)不能確定以及圖形位置或形狀不確定時(shí)考慮分類討論,但分類討論絕不能憑主觀臆斷,一開始就分類討論,而是在計(jì)算或推理的過程中逢時(shí)而生,自然展開。

七、教師在新課程實(shí)施中滲透分類討論思想的對(duì)策

在初中數(shù)學(xué)課程改革中,教師對(duì)分類討論思想的滲透還存在一些不到位的地方,表現(xiàn)為:①在思想意識(shí)上,對(duì)分類討論思想的重要性認(rèn)識(shí)不足;②在教材運(yùn)用上,對(duì)分類討論思想挖掘不深,如對(duì)分類討論思想在教材中的設(shè)置把脈不清,對(duì)分類討論思想在教材中的層次缺少深度思考,對(duì)分類討論思想的滲透缺乏整體規(guī)劃與設(shè)計(jì);③在教學(xué)過程中,對(duì)分類討論思想滲透不強(qiáng),教師往往關(guān)注知識(shí)的生成多,思想方法的滲透少,側(cè)重就題論題多,思想方法的提煉少,注重知識(shí)系統(tǒng)多,思想方法的歸納少;④在實(shí)踐應(yīng)用上,對(duì)分類討論思想提升不夠,教師將分類討論過多的停留在簡單訓(xùn)練的層面上或訓(xùn)練模式的創(chuàng)新上,而忽視對(duì)思想方法的抽象與概括。那么,如何將分類討論思想在新課程實(shí)施中有效地滲透呢?我覺得不妨從以下二個(gè)方面著手:

(一)加強(qiáng)對(duì)數(shù)學(xué)課程標(biāo)準(zhǔn)的學(xué)習(xí),充分挖掘教材中蘊(yùn)藏的分類討論思想,明確分類討論思想在不同階段的目標(biāo)要求

數(shù)學(xué)課程標(biāo)準(zhǔn)把讓學(xué)生獲得適應(yīng)社會(huì)生活和進(jìn)一步發(fā)展所必需的數(shù)學(xué)思想方法作為教學(xué)的總體目標(biāo)。人教版教材第一章《有理數(shù)》在學(xué)習(xí)了正負(fù)數(shù)后,以有理數(shù)的分類及絕對(duì)值的意義為載體最先拉開了分類討論思想滲透的序幕。在以后的學(xué)習(xí)活動(dòng)中,隨著學(xué)習(xí)的深入,分類討論思想由“隱性”向“顯性”、由“方法”向“思想”逐步滲透,不斷提升,最終實(shí)現(xiàn)由“思想”指導(dǎo)“方法”,達(dá)到水到渠成的功效。因此,教師在新課程實(shí)施中必須站在全局的高度統(tǒng)攬教學(xué),對(duì)分類討論思想的滲透既有整體規(guī)劃和設(shè)計(jì),又有明確而具體的目標(biāo)和要求。

(二)在新課程實(shí)施中遵循逐級(jí)遞進(jìn)、螺旋上升的原則,將分類討論思想有機(jī)滲透到每個(gè)階段的教學(xué)之中

1.滲透“分類方法”,感知“分類思想”。由于初中生的數(shù)學(xué)知識(shí)比較貧乏,抽象思維能力較為薄弱,對(duì)數(shù)學(xué)思想方法還缺乏足夠的了解,因此,在新課程實(shí)施中必須以知識(shí)的學(xué)習(xí)為載體,注重?cái)?shù)學(xué)概念的生成過程、知識(shí)的發(fā)展過程和問題的解決過程,通過教師的啟發(fā)引領(lǐng),向?qū)W生逐步滲透“分類方法”,讓學(xué)生在展開思維獲取知識(shí)的同時(shí)初步感知分類思想。

2.訓(xùn)練“分類方法”,領(lǐng)悟“分類思想”。教師在新課程實(shí)施中要充分挖掘教材中體現(xiàn)分類討論思想方法的各種元素,根據(jù)學(xué)生年級(jí)的不同、知識(shí)的不同和認(rèn)知能力的不同,對(duì)“分類方法”展開由淺入深、由易到難、由隱到顯的層次性訓(xùn)練,使分類討論思想在訓(xùn)練過程中多次孕育,不斷領(lǐng)悟,初步形成。

3.掌握“分類方法”,運(yùn)用“分類思想”。學(xué)生對(duì)于“分類方法”的掌握需經(jīng)歷一個(gè)學(xué)習(xí)、思考、訓(xùn)練、鞏固的體驗(yàn)過程。同樣,“分類思想”的形成也是在“分類方法”的漸進(jìn)生成過程中逐步領(lǐng)悟、不斷完善建立起來的。在新課程實(shí)施中,只有把分類方法提升到分類思想的高度加以認(rèn)識(shí),才能變知識(shí)的生成過程為數(shù)學(xué)思想方法的形成過程,從而把分類討論思想進(jìn)行有效遷移和靈活運(yùn)用。

第4篇:分類討論的數(shù)學(xué)思想方法范文

一、知識(shí)要點(diǎn)概述

1.分類討論的思想方法的原理及作用

在研究與解決數(shù)學(xué)問題時(shí),將數(shù)學(xué)對(duì)象劃分為若干既有聯(lián)系又有區(qū)別的部分,然后逐類進(jìn)行討論,再把這幾類的結(jié)論匯總,從而得出問題的答案,這種研究解決問題的思想方法就是分類討論的思想方法.分類討論的思想方法是中學(xué)數(shù)學(xué)的基本方法之一,在近幾年的高考試題中都把分類討論思想方法列為重要的思想方法來考查,體現(xiàn)出其重要的位置.

2.引起分類討論的原因主要是以下幾個(gè)方面

①問題所涉及到的數(shù)學(xué)概念是分類進(jìn)行定義的.如|a|的定義分a>0,a=0,a

②問題中涉及到的數(shù)學(xué)定理、公式和運(yùn)算性質(zhì)、法則有范圍或者條件限制,或者是分類給出的.如等比數(shù)列的前n項(xiàng)和的公式,分q=1和q≠1兩種情況.這種分類討論題型可以稱為性質(zhì)型.

③解含有參數(shù)的題目時(shí),必須根據(jù)參數(shù)的不同取值范圍進(jìn)行討論.如解不等式ax>3時(shí)分a>0,a=0,a

另外,某些不確定的數(shù)量、不確定的圖形的形狀或位置、不確定的結(jié)論等,都主要通過分類討論,保證其完整性,使之具有確定性.

二、解題方法指導(dǎo)

1.分類討論的思想方法的步驟

(1)確定標(biāo)準(zhǔn);(2)合理分類;(3)逐類討論;(4)歸納總結(jié).

2.簡化分類討論的策略

(1)消去參數(shù);(2)整體換元;(3)變更主元;(4)考慮反面;(5)整體變形;(6)數(shù)形結(jié)合;(7)縮小范圍等.

3.進(jìn)行分類討論時(shí),我們要遵循的原則是

分類的對(duì)象是確定的,標(biāo)準(zhǔn)是統(tǒng)一的,不遺漏、不重復(fù),科學(xué)地劃分,分清主次,不越級(jí)討論.其中最重要的一條是“不漏不重”.

4.解題時(shí)把好“四關(guān)”

(1)要深刻理解基本知識(shí)與基本原理,把好“基礎(chǔ)關(guān)”;

(2)要找準(zhǔn)劃分標(biāo)準(zhǔn),把好“分類關(guān)”;

(3)要保證條理分明,層次清晰,把好“邏輯關(guān)”;

(4)要注意對(duì)照題中的限制條件或隱含信息,合理取舍,把好“檢驗(yàn)關(guān)”.

三、分類討論基本題型

友情提示:解決由概念、法則、公式引起的分類討論問題一般分四個(gè)步驟:

第一步:確定需分類的目標(biāo)與對(duì)象.即確定需要分類的目標(biāo),一般把需要用到公式、定理解決問題的對(duì)象作為分類目標(biāo).

第二步:根據(jù)公式、定理確定分類標(biāo)準(zhǔn).運(yùn)用公式、定理對(duì)分類對(duì)象進(jìn)行區(qū)分.

第三步:分類解決“分目標(biāo)”問題.對(duì)分類出來的“分目標(biāo)”分別進(jìn)行處理.

第四步:匯總“分目標(biāo)”.將“分目標(biāo)”問題進(jìn)行匯總,并作進(jìn)一步處理.

2.由參數(shù)變化而引起的分類討論

友情提示:一般地,遇到題目中含有參數(shù)的問題,常常結(jié)合參數(shù)的意義及對(duì)結(jié)果的影響進(jìn)行分類討論.這類問題有兩種情形:(1)由于所求的變量或參數(shù)的取值不同會(huì)導(dǎo)致結(jié)果不同,所以要對(duì)某些問題中所求的變量進(jìn)行討論;(2)有的問題中雖然不需要對(duì)變量討論,但卻要對(duì)參數(shù)討論.在求解時(shí)要注意討論的對(duì)象,同時(shí)應(yīng)理順討論的目的.

3.根據(jù)圖形位置或形狀分類討論

第5篇:分類討論的數(shù)學(xué)思想方法范文

關(guān)鍵詞:數(shù)學(xué)思想方法;靈魂;金鑰匙

初中階段是中學(xué)生打基礎(chǔ)的階段,而初一則是啟蒙階段,這

個(gè)階段數(shù)學(xué)學(xué)習(xí)的好壞將直接影響今后的學(xué)習(xí)。數(shù)學(xué)思想方法是數(shù)學(xué)中的理性認(rèn)識(shí),是數(shù)學(xué)知識(shí)的本質(zhì),它可以提高學(xué)生的解題技巧和方法,啟迪智慧,發(fā)揮潛力,培養(yǎng)學(xué)生的自主學(xué)習(xí)和創(chuàng)新精神。依據(jù)教材的特點(diǎn)和學(xué)生的年齡特征,我認(rèn)為初一數(shù)學(xué)教學(xué)時(shí)要滲透如下幾種數(shù)學(xué)思想方法:

一、數(shù)形結(jié)合的思想方法

數(shù)形結(jié)合思想是指將代數(shù)與幾何結(jié)合起來,即將抽象的數(shù)學(xué)語言與直觀的圖形結(jié)合起來,使抽象思維與形象思維相結(jié)合。所以,我們研究數(shù)學(xué)問題時(shí)要善于由形思數(shù)、由數(shù)思形,通過數(shù)與形的轉(zhuǎn)化把一個(gè)數(shù)的問題用圖形直觀地表達(dá)出來,從而找到解題思路。利用數(shù)形結(jié)合,可以使所要研究的問題化難為易、化繁為簡。數(shù)形結(jié)合是中學(xué)數(shù)學(xué)中重要的數(shù)學(xué)思想方法,在每年的中考試卷中均有一定數(shù)量的試題可采用此方法解答。因此,教師有意識(shí)地、靈活地培養(yǎng)學(xué)生使用數(shù)形結(jié)合的思想方法,是數(shù)學(xué)教學(xué)的一個(gè)重要內(nèi)容,不僅能提高學(xué)生的審美能力,更能培養(yǎng)學(xué)生的形象思維能力和創(chuàng)新能力。例如:不等式x+2>5的解集,可以表示成x>3,也可以在數(shù)軸上直觀地表示出來,如下圖所示:

用數(shù)軸來表示不等式的解集,不僅形象而且簡單、直觀、明

了,培養(yǎng)了學(xué)生的思維能力和創(chuàng)造性。

二、分類討論的思想方法

分類討論就是根據(jù)一定的標(biāo)準(zhǔn),對(duì)問題進(jìn)行分類求解,然后歸納綜合出問題的答案。當(dāng)被研究的問題含多種解答,不能一概而論時(shí),必須按照可能出現(xiàn)的各種情況分別討論,得出各種情況下相應(yīng)的結(jié)論。分類討論思想是中學(xué)數(shù)學(xué)最常用的思想方法之一,也是中考常見的數(shù)學(xué)思想。分類思想在初一數(shù)學(xué)中應(yīng)用很廣,如三角形按角分類、按邊分類等等。教學(xué)時(shí),加強(qiáng)滲透分類討論的思想方法,大膽鼓勵(lì)學(xué)生開展討論、交流、合作的學(xué)習(xí)方法,可以提高學(xué)生的解題技巧,培養(yǎng)學(xué)生的思維能力、主動(dòng)學(xué)習(xí)的精神和辯證的觀點(diǎn)。應(yīng)用時(shí)必須注意以下兩點(diǎn):

一是每次分類要按照同一標(biāo)準(zhǔn)進(jìn)行,分類常用的依據(jù)有概

念、法則,圖形的性質(zhì)、形狀等。二是不重復(fù)、不遺漏。

例:解下列方程:x-3=2

解:(1)當(dāng)x-3>0時(shí),原方程可化為:x-3=2,解得x=5

(2)當(dāng)x-3

所以,原方程的解為x=5或x=1.

解絕對(duì)值方程關(guān)鍵是按絕對(duì)值的意義進(jìn)行分類討論,并注意對(duì)所有的分類情況進(jìn)行總結(jié)。

三、化歸的思想方法

所謂“化歸”即“轉(zhuǎn)化”和“歸結(jié)”,也就是把要解決的問題轉(zhuǎn)化歸結(jié)為另一個(gè)較容易的問題或已解決的問題,是把“新知識(shí)”轉(zhuǎn)化為“舊知識(shí)”,把“未知”轉(zhuǎn)化為“已知”;把復(fù)雜問題轉(zhuǎn)化為簡單問題。它是解決數(shù)學(xué)問題的基本方法,也是初一教材中的“二元一次方程組和它的解”的基本思想。教師教學(xué)時(shí),要注意把“新知識(shí)”通過觀察、分析、討論、總結(jié)遷移到“舊知識(shí)中”。通過知識(shí)的遷移應(yīng)用,提高學(xué)生分析問題、解決問題的能力,培養(yǎng)學(xué)生的創(chuàng)新精神。

例:已知m、n滿足下面等式

(3m-4n-14)2+5m+4n-2=0,求m、n的值。

解:依題意得:3m-4n-14=0

5m+4n-2=0

將這個(gè)方程組化為:

3m-4n=14 ①

5m+4n=2 ②

由①+②得:3m-4n+5m+4n=14+2

解得m=2

把m=2帶入①式,得n=2

所以,m=2,n=2。

這個(gè)題目運(yùn)用了兩次化歸的思想方法,即先將問題化歸為解二元一次方程組,又把解二元一次方程組化為解一元一次方程,使解題思路清晰化、問題簡單化。

四、畫圖表的思想方法

利用圖形、表格來解決數(shù)學(xué)問題的方法稱為圖表法。這種方法可根據(jù)題中的條件,使數(shù)量關(guān)系和圖形、表格巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,使問題的邏輯結(jié)構(gòu)直觀地顯現(xiàn)出來,并提供程序性操作的機(jī)會(huì),使問題得到解決。在用圖表法解決問題時(shí),要善于把題中已知條件歸納或統(tǒng)計(jì)成圖形、表格。另外,還要能充分分解圖形、表格,從中獲得更多的信息。

總之,解決初中數(shù)學(xué)問題的思想方法很多,如:整體思想方法、比較思想方法、統(tǒng)計(jì)思想方法等等。初中數(shù)學(xué)教材的各部分內(nèi)容都有自己常見的思想方法?!笆谌艘贼~,不如授人以漁。”教師在教學(xué)時(shí),要依據(jù)教材內(nèi)容,加強(qiáng)數(shù)學(xué)思想方法的指導(dǎo),使學(xué)生掌握一些常用的思想方法,提高解題的技能和智能,激發(fā)學(xué)習(xí)興趣,培養(yǎng)創(chuàng)新精神,讓學(xué)生在數(shù)學(xué)世界中遨游。

參考文獻(xiàn):

第6篇:分類討論的數(shù)學(xué)思想方法范文

一、數(shù)學(xué)思想方法的分類

1.函數(shù)與方程的思想方法。函數(shù)思想指的是提到問題的數(shù)學(xué)特征,用聯(lián)系變化的觀點(diǎn)提出數(shù)學(xué),抽象其數(shù)學(xué)特征,建立函數(shù)關(guān)系。很明顯 ,只有在對(duì)問題的觀察、分析、判斷等一系列的思想過程中,具備有標(biāo)新立異、獨(dú)創(chuàng)性思維,才能構(gòu)造出函數(shù)原型,化歸為方程的問題,實(shí)現(xiàn)函數(shù)與方程的互相轉(zhuǎn)化接軌,達(dá)到解決問題的目的。

2.數(shù)形結(jié)合的思想方法

數(shù)形結(jié)合的思想,其實(shí)質(zhì)是將抽象的數(shù)學(xué)語言與直觀的圖形結(jié)合起來,使抽象思維形象思維結(jié)合,通過對(duì)圖形的認(rèn)識(shí),數(shù)形結(jié)合的轉(zhuǎn)化,可以培養(yǎng)思維的靈活性,使問題化難為易,化抽象為具體。

3.分類討論的思想方法

分類討論是解決問題的一種邏輯方法,也是一種數(shù)學(xué)思想,這種思想在人的思維發(fā)展中有著重要作用。如“參數(shù)問題”對(duì)中學(xué)生來說并不十分陌生,它實(shí)際上是對(duì)具體的個(gè)別的問題的概括。從絕對(duì)值、算術(shù)根以及在一般情況下討論字母系數(shù)的方程、不等式、函數(shù),到曲線方程等,無不包含著討論的思想。

4.等價(jià)轉(zhuǎn)化思想

等價(jià)轉(zhuǎn)化思想是把未知解的問題轉(zhuǎn)化到在已有知識(shí)范圍內(nèi)可解的問題,是一種重要數(shù)學(xué)思想方法,轉(zhuǎn)化包括等價(jià)轉(zhuǎn)化和非等價(jià)轉(zhuǎn)化,等價(jià)轉(zhuǎn)化要求轉(zhuǎn)化中前因后果應(yīng)是充分必要的,這樣的轉(zhuǎn)化后的結(jié)果仍為原問題所需的結(jié)果:而非等價(jià)轉(zhuǎn)化其過程是充分或必要的,這樣的轉(zhuǎn)化能給人帶來思維的閃光點(diǎn),看到解決問題的突破口,是分析問題中思維過程的主要組成部分。轉(zhuǎn)化思想貫穿于整個(gè)高中數(shù)學(xué)之中,每個(gè)問題的解題過程實(shí)質(zhì)就是不斷轉(zhuǎn)化的過程。

二、數(shù)學(xué)思想方法教學(xué)的主要途徑

數(shù)學(xué)思想方法是數(shù)學(xué)概念、理論的相互聯(lián)系和本質(zhì)所在,是對(duì)數(shù)學(xué)規(guī)律的理性認(rèn)識(shí)和本質(zhì)體現(xiàn)。初、高中的銜接不僅僅是知識(shí)點(diǎn)的銜接,更是思想方法、思維習(xí)慣、學(xué)習(xí)習(xí)慣、學(xué)習(xí)方法的銜接。因此,要培養(yǎng)學(xué)生的數(shù)學(xué)能力,就必須重視數(shù)學(xué)思想方法的教學(xué)。學(xué)生在數(shù)學(xué)學(xué)習(xí)中掌握了數(shù)學(xué)思想方法,既可以提高理論水平,又可以用它指導(dǎo)做題實(shí)踐,而在做題反思中,學(xué)生的數(shù)學(xué)思想方法又得以不斷充實(shí)、豐富和完善。

為了使學(xué)生掌握必要的數(shù)學(xué)思想方法,需要從教材和教法兩方面有機(jī)結(jié)合進(jìn)行,在教材中要滲透數(shù)學(xué)思想方法,在教法中要應(yīng)用數(shù)學(xué)思想方法。數(shù)學(xué)思想方法的教學(xué)要結(jié)合教學(xué)內(nèi)容進(jìn)行,不能脫離教學(xué)內(nèi)容只傳授形式。脫離了數(shù)學(xué)思想方法指導(dǎo)的教學(xué)和脫離了內(nèi)容的數(shù)學(xué)思想方法的教學(xué)都是不全面的教學(xué)。數(shù)學(xué)思想方法蘊(yùn)含在數(shù)學(xué)基礎(chǔ)知識(shí)和基本方法之中,正是有了數(shù)學(xué)思想方法,才使得數(shù)學(xué)知識(shí)不再是零散的、孤立的片斷。學(xué)生如果掌握了基本的數(shù)學(xué)思想方法,數(shù)學(xué)將變得更加容易理解和記憶,他們駕馭知識(shí)的能力也更強(qiáng)了,而且會(huì)使其它學(xué)科更容易學(xué)了。

高中數(shù)學(xué)中所用的數(shù)學(xué)思想方法有函數(shù)與方程思想、數(shù)形結(jié)合思想、分類討論思想、轉(zhuǎn)化與化歸思想、或然與必然思想、整體思想、對(duì)稱思想、換元思想、極限思想、參數(shù)思想、建模思想等。數(shù)學(xué)思想方法的掌握要靠平時(shí)的積累,臨時(shí)抱佛腳是行不通的。

1.用數(shù)學(xué)思想指導(dǎo)基礎(chǔ)復(fù)習(xí),在基礎(chǔ)學(xué)習(xí)中培養(yǎng)思想方法

(1)基礎(chǔ)知識(shí)的復(fù)習(xí)中要充分展現(xiàn)知識(shí)形成發(fā)展過程,揭示其中蘊(yùn)涵的豐富的數(shù)學(xué)思想方法。如討論直線和圓錐曲線的位置關(guān)系時(shí)的兩種基本方法:一是把直線方程圓錐曲線方程聯(lián)立,討論方程組解的情況;二是從幾何圖形上考慮直線和圓錐交點(diǎn)的情況,利用數(shù)形結(jié)合的思想方法,使問題清晰明了。

(2)注重各知識(shí)點(diǎn)在教學(xué)整體結(jié)構(gòu)中的內(nèi)在聯(lián)系,揭示思想方法在知識(shí)互相聯(lián)系、互相溝通中的紐帶作用。如函數(shù)、方程、不等式的關(guān)系,當(dāng)函數(shù)值等于、大于或小于一常數(shù)時(shí),分別可得方程、不等式,聯(lián)想函數(shù)圖象可提供方程、不等式的解的幾何意義,運(yùn)用轉(zhuǎn)化、數(shù)形結(jié)合,這三塊知識(shí)可相互為用。

2.用數(shù)學(xué)思想方法指導(dǎo)解題練習(xí),在問題解決中運(yùn)用思想方法,提高學(xué)生自覺運(yùn)用數(shù)學(xué)思想方法的意識(shí)

(1)注意分析探求解題思路運(yùn)用

解題的過程中就是在數(shù)學(xué)思想的指導(dǎo)下,合理聯(lián)想提取相關(guān)知識(shí),調(diào)用一定數(shù)學(xué)方法加工、處理題設(shè)條件及知識(shí),逐步縮小題設(shè)與題斷間的差異的過程。也可以說是運(yùn)用化歸思想的過程。解題思想的尋求就自然是運(yùn)用思想方法分析解決問題的過程。

(2)注意數(shù)學(xué)思想方法在解決典型問題中的運(yùn)用

例如選擇題中的求解不等式 ,雖然可以通過代數(shù)方法求解,但若用數(shù)形結(jié)合,轉(zhuǎn)化為直線與半圓的位置關(guān)系,問題變得非常簡單。

(3)以數(shù)學(xué)思想方法為指導(dǎo),進(jìn)行一題多解的練習(xí)

第7篇:分類討論的數(shù)學(xué)思想方法范文

摘要:開展數(shù)學(xué)思想方法教育是新課標(biāo)提出的重要教學(xué)要求 ,數(shù)學(xué)思想方法是從數(shù)學(xué)內(nèi)容中提煉出來的數(shù)學(xué)學(xué)科的精髓,是將數(shù)學(xué)知識(shí)轉(zhuǎn)化為數(shù)學(xué)能力的橋梁。初中數(shù)學(xué)思想方法教育,是培養(yǎng)和提高學(xué)生素質(zhì)的重要內(nèi)容。因此,開展數(shù)學(xué)思想方法教育應(yīng)作為新課改中所必須把握的教學(xué)要求。

關(guān)鍵詞:數(shù)學(xué)思想;方法;教學(xué);思考

一、關(guān)于對(duì)“初中數(shù)學(xué)教材進(jìn)行數(shù)學(xué)思想方法”的教學(xué)研究

首先,要通過對(duì)教材完整的分析和研究,理清和把握教材的體系和脈絡(luò),統(tǒng)攬教材全局,高屋建瓴。然后,建立各類概念、知識(shí)點(diǎn)或知識(shí)單元之間的界面關(guān)系,歸納和揭示其特殊性質(zhì)和內(nèi)在的一般規(guī)律。例如,在“因式分解”這一章中,我們接觸到許多數(shù)學(xué)方法―提公因式法、運(yùn)用公式法、分組分解法、十字相乘法等。這是學(xué)習(xí)這一章知識(shí)的重點(diǎn),只要我們學(xué)會(huì)了這些方法,按知識(shí)――方法――思想的順序提煉數(shù)學(xué)思想方法,就能運(yùn)用它們?nèi)ソ鉀Q成千上萬分解多項(xiàng)式因式的問題。又如:結(jié)合初中代數(shù)的消元、降次、配方、換元方法,以及分類、變換、歸納、抽象和數(shù)形結(jié)合等方法性思想,進(jìn)一步確定數(shù)學(xué)知識(shí)與其思想方法之間的結(jié)合點(diǎn),建立一整套豐富的教學(xué)范例或模型,最終形成一個(gè)活動(dòng)的知識(shí)與思想互聯(lián)網(wǎng)絡(luò)。

二、關(guān)于對(duì)“將數(shù)學(xué)思想方法有機(jī)地滲透入教學(xué)計(jì)劃和教案內(nèi)容之中”的研究

教學(xué)計(jì)劃的制訂應(yīng)體現(xiàn)數(shù)學(xué)思想方法教學(xué)的綜合考慮,要明確每一階段的載體內(nèi)容、教學(xué)目標(biāo)、展開步驟、教學(xué)程序和操作要點(diǎn)。數(shù)學(xué)教案則要就每一節(jié)課的概念、命題、公式、法則以至單元結(jié)構(gòu)等教學(xué)過程進(jìn)行滲透思想方法的具體設(shè)計(jì)。要求通過目標(biāo)設(shè)計(jì)、創(chuàng)設(shè)情境、程序演化、歸納總結(jié)等關(guān)鍵環(huán)節(jié),在知識(shí)的發(fā)生和運(yùn)用過程中貫徹?cái)?shù)學(xué)思想方法,形成數(shù)學(xué)知識(shí)、方法和思想的一體化。

應(yīng)充分利用數(shù)學(xué)的現(xiàn)實(shí)原型作為反映數(shù)學(xué)思想方法的基礎(chǔ)。數(shù)學(xué)思想方法是對(duì)數(shù)學(xué)問題解決或構(gòu)建所做的整體性考慮,它來源于現(xiàn)實(shí)原型又高于現(xiàn)實(shí)原型,往往借助現(xiàn)實(shí)原型使數(shù)學(xué)思想方法得以生動(dòng)地表現(xiàn),有利于對(duì)其深人理解和把握。例如:分類討論的思想方法始終貫穿于整個(gè)數(shù)學(xué)教學(xué)中。在教學(xué)中要引導(dǎo)學(xué)生對(duì)所討論的對(duì)象進(jìn)行合理分類(分類時(shí)要做到不重復(fù)、不遺漏、標(biāo)準(zhǔn)統(tǒng)一、分層不越級(jí)),然后逐類討論(即對(duì)各類問題詳細(xì)討論、逐步解決),最后歸納總結(jié)。教師要幫助學(xué)生掌握好分類的方法原則,形成分類思想。

數(shù)學(xué)思想方法的滲透應(yīng)根據(jù)教學(xué)計(jì)劃有步驟地進(jìn)行。一般在知識(shí)的概念形成階段導(dǎo)入概念型數(shù)學(xué)思想,如方程思想、相似思想、已知與未知互相轉(zhuǎn)化的思想、特殊與一般互相轉(zhuǎn)化的思想等等。在知識(shí)的結(jié)論、公式、法則等規(guī)律的推導(dǎo)階段,要強(qiáng)調(diào)和灌輸思維方法,如解方程的如何消元降次、函數(shù)的數(shù)與形的轉(zhuǎn)化、判定兩個(gè)三角形相似有哪些常用思路等。在知識(shí)的總結(jié)階段或新舊知識(shí)結(jié)合部分,要選配結(jié)構(gòu)型的數(shù)學(xué)思想,如函數(shù)與方程思想體現(xiàn)了函數(shù)、方程、不等式間的相互轉(zhuǎn)化,分?jǐn)?shù)討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化。在所有數(shù)學(xué)建構(gòu)及問題的處理方面,注意體現(xiàn)其根本思想,如運(yùn)用同解原理解一元一次方程,應(yīng)注意為簡便而采取的移項(xiàng)法則。

三、關(guān)于對(duì)“在知識(shí)的引進(jìn)、消化和應(yīng)用過程中促使學(xué)生領(lǐng)悟和提煉數(shù)學(xué)思想方法”的研究

數(shù)學(xué)知識(shí)發(fā)生的過程也是其思想方法產(chǎn)生的過程。在此過程中,要向?qū)W生提供豐富的、典型的以及正確的直觀背景材料,創(chuàng)設(shè)使認(rèn)知主體與客體之間激發(fā)作用的環(huán)境和條件,通過對(duì)知識(shí)發(fā)生過程的展示,使學(xué)生的思維和經(jīng)驗(yàn)全部投人到接受問題、分析問題和感悟思想方法的挑戰(zhàn)之中,從而主動(dòng)構(gòu)建科學(xué)的認(rèn)知結(jié)構(gòu),將數(shù)學(xué)思想方法與數(shù)學(xué)知識(shí)融匯成一體,最終形成獨(dú)立探索分析、解決問題的能力。

概念既是思維的基礎(chǔ),又是思維的結(jié)果。恰當(dāng)?shù)卣故酒湫纬傻倪^程,拉長被壓縮了的“知識(shí)鏈”,是對(duì)數(shù)學(xué)抽象與數(shù)學(xué)模型方法進(jìn)行點(diǎn)悟的極好素材和契機(jī)。在概念的引進(jìn)過程中,應(yīng)注意:①解釋概念產(chǎn)生的背景,讓學(xué)生了解定義的合理性和必要性;②揭示概念的形成過程,讓學(xué)生綜合概念定義的本質(zhì)屬性;③鞏固和加深概念理解,讓學(xué)生在變式和比較中活化思維。

在規(guī)律(定理、公式、法則等)的揭示過程中,教師應(yīng)注意灌輸數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索性思維能力,并引導(dǎo)學(xué)生通過感性的直觀背景材料或已有的知識(shí)發(fā)現(xiàn)規(guī)律,不過早地給結(jié)論,講清抽象、概括或證明的過程,充分地向?qū)W生展現(xiàn)自己是如何思考的,使學(xué)生領(lǐng)悟蘊(yùn)含其中的思想方法。

數(shù)學(xué)問題的化解是數(shù)學(xué)教學(xué)的核心,其最終目的要學(xué)會(huì)運(yùn)用數(shù)學(xué)知識(shí)和思想方法分析和解決實(shí)際問題。例如“平行四邊形的面積求法”的問題,通過探求解決問題的思想和策略,得到以化歸思想指導(dǎo)將思維定向轉(zhuǎn)化成求已知矩形的面積。這樣以問題的變式教學(xué),使學(xué)生認(rèn)識(shí)到求解該問題的實(shí)質(zhì)是等積變換,即要在保持面積不變的情形下實(shí)現(xiàn)化歸目標(biāo),而化歸的手段是“三角形位移”,由此揭示了解決問題的思維過程及其所包含的數(shù)學(xué)思想,同時(shí)提高了學(xué)生探索性思維能力。在數(shù)學(xué)知識(shí)的引進(jìn)、消化和運(yùn)用的過程中,要利用單元復(fù)習(xí)和階段性總結(jié)的時(shí)間,以適當(dāng)集中的方式,從縱橫兩方面整理、概括和提煉出數(shù)學(xué)思想方法綱要和系統(tǒng)。以分散方式的滲透性教學(xué)為基礎(chǔ),集中強(qiáng)化數(shù)學(xué)思想方法教育的形式,促使學(xué)生對(duì)數(shù)學(xué)思想方法由個(gè)別的具體感悟上升到一般的理性認(rèn)識(shí),這有利于提高教學(xué)效果。

第8篇:分類討論的數(shù)學(xué)思想方法范文

一、初中數(shù)學(xué)思想方法教學(xué)的重要性

長期以來,傳統(tǒng)的數(shù)學(xué)教學(xué)中,只注重知識(shí)的傳授,卻忽視知識(shí)形成過程中的數(shù)學(xué)思想方法的現(xiàn)象非常普遍,它嚴(yán)重影響了學(xué)生的思維發(fā)展和能力培養(yǎng)。隨著教育改革的不斷深入,越來越多的教育工作者,特別是一線的教師們充分認(rèn)識(shí)到:中學(xué)數(shù)學(xué)教學(xué),一方面要傳授數(shù)學(xué)知識(shí),使學(xué)生掌握必備數(shù)學(xué)基礎(chǔ)知識(shí);另一方面,更要通過數(shù)學(xué)知識(shí)這個(gè)載體,挖掘其中蘊(yùn)含的數(shù)學(xué)思想方法,更好地理解數(shù)學(xué),掌握數(shù)學(xué),形成正確的數(shù)學(xué)觀和一定的數(shù)學(xué)意識(shí)[1]。事實(shí)上,單純的知識(shí)教學(xué),只顯見于學(xué)生知識(shí)的積累,是會(huì)遺忘甚至于消失的,而方法的掌握,思想的形成,才能使學(xué)生受益終生,正所謂“授之以魚,不如授之以漁”。不管他們將來從事什么職業(yè)和工作,數(shù)學(xué)思想方法,作為一種解決問題的思維策略,都將隨時(shí)隨地有意無意地發(fā)揮作用。

二、初中數(shù)學(xué)思想方法的主要內(nèi)容

初中數(shù)學(xué)中蘊(yùn)含的數(shù)學(xué)思想方法很多,最基本最主要的有:轉(zhuǎn)化的思想方法,數(shù)形結(jié)合的思想方法,分類討論的思想方法,函數(shù)與方程的思想方法等。

(一)轉(zhuǎn)化的思想方法

轉(zhuǎn)化的思想方法就是人們將需要解決的問題,通過某種轉(zhuǎn)化手段,歸結(jié)為另一種相對(duì)容易解決的或已經(jīng)有解決方法的問題,從而使原來的問題得到解決。初中數(shù)學(xué)處處都體現(xiàn)出轉(zhuǎn)化的思想方法。如化繁為簡、化難為易,化未知為已知等,它是解決問題的一種最基本的思想方法。具體說來,代數(shù)式中加法與減法的轉(zhuǎn)化,乘法與除法的轉(zhuǎn)化,換元法解方程,幾何中添加輔助線等等,都體現(xiàn)出轉(zhuǎn)化的思想方法。

(二)數(shù)形結(jié)合的思想方法

數(shù)學(xué)是研究現(xiàn)實(shí)世界空間形式和數(shù)量關(guān)系的科學(xué),因而研究總是圍繞著數(shù)與形進(jìn)行的?!皵?shù)”就是代數(shù)式、函數(shù)、不等式等表達(dá)式,“形”就是圖形、圖象、曲線等。數(shù)形結(jié)合就是抓住數(shù)與形之間的本質(zhì)上的聯(lián)系,以形直觀地表達(dá)數(shù),以數(shù)精確地研究形?!皵?shù)無形時(shí)不直觀,形無數(shù)時(shí)難入微?!睌?shù)形結(jié)合是研究數(shù)學(xué)問題的重要思想方法[2]。初中數(shù)學(xué)中,通過數(shù)軸,將數(shù)與點(diǎn)對(duì)應(yīng),通過直角坐標(biāo)系,將函數(shù)與圖象對(duì)應(yīng),用數(shù)形結(jié)合的思想方法學(xué)習(xí)了相反數(shù)的概念、絕對(duì)值的概念,有理數(shù)大小比較的法則,研究了函數(shù)的性質(zhì)等,通過形象思維過渡到抽象思維,大大減輕了學(xué)習(xí)的難度。

(三)分類討論的思想方法

分類討論的思想方法就是根據(jù)數(shù)學(xué)對(duì)象本質(zhì)屬性的共同點(diǎn)和差異點(diǎn),將數(shù)學(xué)對(duì)象區(qū)分為不同種類的思想方法。分類是以比較為基礎(chǔ)的,它能揭示數(shù)學(xué)對(duì)象之間的內(nèi)在規(guī)律,有助于學(xué)生總結(jié)歸納數(shù)學(xué)知識(shí),解決數(shù)學(xué)問題。初中數(shù)學(xué)從整體上看分為代數(shù)、幾何兩大類,采用不同方法進(jìn)行研究,就是分類思想的體現(xiàn)。具體來說,實(shí)數(shù)的分類,方程的分類、三角形的分類,函數(shù)的分類等,都是分類思想的具體體現(xiàn)。

三、初中數(shù)學(xué)思想方法的教學(xué)規(guī)律

數(shù)學(xué)思想方法蘊(yùn)含于數(shù)學(xué)知識(shí)之中,又相對(duì)超脫于某一個(gè)具體的數(shù)學(xué)知識(shí)之外。數(shù)學(xué)思想方法的教學(xué)比單純的數(shù)學(xué)知識(shí)教學(xué)困難得多。因?yàn)閿?shù)學(xué)思想方法是具體數(shù)學(xué)知識(shí)的本質(zhì)和內(nèi)在聯(lián)系的反映,具有一定的抽象性和概括性,它強(qiáng)調(diào)的是一種意識(shí)和觀念。對(duì)于初中學(xué)生來說,這個(gè)年齡段正是由形象思維向抽象的邏輯思維過渡的階段,雖然初步具有了簡單的邏輯思維能力,但是還缺乏主動(dòng)性和能動(dòng)性。因此,在數(shù)學(xué)教學(xué)活動(dòng)中,必須注意數(shù)學(xué)思想方法的教學(xué)規(guī)律。

(一)深入鉆研教材,將數(shù)學(xué)思想方法化隱為顯

首先,教師在備課時(shí),要從數(shù)學(xué)思想方法的高度深入鉆研教材,數(shù)學(xué)思想方法既是數(shù)學(xué)教學(xué)設(shè)計(jì)的核心,同時(shí)又是數(shù)學(xué)教材組織的基礎(chǔ)和起點(diǎn)。通過對(duì)概念、公式、定理的研究,對(duì)例題、練習(xí)的探討,挖掘有關(guān)的數(shù)學(xué)思想方法,了然于胸,將它們由深層次的潛形態(tài)轉(zhuǎn)變?yōu)轱@形態(tài),由對(duì)它們的朦朧感受轉(zhuǎn)變?yōu)槊魑?、理解和掌握。一方面要明確在每一個(gè)具體的數(shù)學(xué)知識(shí)的教學(xué)中可以進(jìn)行哪些思想方法的教學(xué);另一方面,又要明確每一個(gè)數(shù)學(xué)思想方法,可以在哪些知識(shí)點(diǎn)中進(jìn)行滲透。只有在這種前提下,才能加強(qiáng)針對(duì)性,有意識(shí)地引導(dǎo)學(xué)生領(lǐng)悟數(shù)學(xué)思想方法。

(二)學(xué)生主動(dòng)參與教學(xué),循序漸進(jìn)形成數(shù)學(xué)思想方法課堂教學(xué)活動(dòng)中,倡導(dǎo)學(xué)生主動(dòng)參與,重視知識(shí)形成的過程,在過程中滲透數(shù)學(xué)思想方法。

概念教學(xué)中,不要簡單地給出定義,要盡可能完整地再現(xiàn)形成定義之前的分析、綜合、比較和概括等思維過程,揭示隱藏其中的思想方法。

定理公式教學(xué)中,不要過早地給出結(jié)論。要引導(dǎo)學(xué)生親自體驗(yàn)結(jié)論的探索、發(fā)現(xiàn)和推導(dǎo)過程,弄清每個(gè)結(jié)論的因果關(guān)系,體會(huì)其中的思想方法。

在掌握重點(diǎn),突破難點(diǎn)的教學(xué)活動(dòng)中,要反復(fù)向?qū)W生滲透數(shù)學(xué)思想方法。數(shù)學(xué)教學(xué)中的重點(diǎn),往往就是需要有意識(shí)地揭示或運(yùn)用數(shù)學(xué)思想方法之處;數(shù)學(xué)教材中的難點(diǎn),往往與數(shù)學(xué)思想方法的更新交替、綜合運(yùn)用,或跳躍性大等有關(guān)。因此,在教學(xué)活動(dòng)中,要適度點(diǎn)撥或明確歸納出所涉及到的數(shù)學(xué)思想方法。

第9篇:分類討論的數(shù)學(xué)思想方法范文

一、初中數(shù)學(xué)教學(xué)內(nèi)容的層次

初中數(shù)學(xué)教學(xué)內(nèi)容從總體上可以分為兩個(gè)層次:一個(gè)為表層知識(shí),另一個(gè)為深層知識(shí)。表層知識(shí)包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識(shí)和基本技能,深層知識(shí)主要指數(shù)學(xué)思想和數(shù)學(xué)方法。

表層知識(shí)是深層知識(shí)的基礎(chǔ),是教學(xué)大綱中明確規(guī)定的、教材中明確給出的、具有較強(qiáng)操作性的知識(shí)。學(xué)生只有通過對(duì)教材的學(xué)習(xí),在掌握和理解了一定的表層知識(shí)后,才能進(jìn)一步地學(xué)習(xí)和領(lǐng)悟相關(guān)的深層知識(shí)。

深層知識(shí)蘊(yùn)含于表層知識(shí)之中,是數(shù)學(xué)的精髓,教師必須在講授表層知識(shí)的過程中不斷地滲透相關(guān)的深層知識(shí),讓學(xué)生在掌握表層知識(shí)的同時(shí)領(lǐng)悟到深層知識(shí),這樣才能使學(xué)生的表層知識(shí)達(dá)到一個(gè)質(zhì)的“飛躍”,從而使學(xué)生脫離“題?!敝?更富有創(chuàng)造性。

二、初中數(shù)學(xué)蘊(yùn)含的主要數(shù)學(xué)思想

初中數(shù)學(xué)中蘊(yùn)含的數(shù)學(xué)思想方法很多,最基本的數(shù)學(xué)思想方法有化歸的思想、數(shù)形結(jié)合的思想、分類討論的思想、方程的思想、函數(shù)的思想等,突出了這些基本思想方法,就相當(dāng)于抓住了初中數(shù)學(xué)知識(shí)的精髓。

1.化歸的思想方法

“化歸”就是轉(zhuǎn)化和歸結(jié),它是解決數(shù)學(xué)問題的基本方法。在解決數(shù)學(xué)問題時(shí),人們常常是將需要解決的問題通過某種轉(zhuǎn)化手段歸結(jié)為另一個(gè)相對(duì)較容易解決或者已經(jīng)有解決程式的問題,以求得問題的解答。

初中數(shù)學(xué)處處都體現(xiàn)出化歸的思想,如化繁為簡、化難為易、化未知為已知、化高次為低次等,它是解決問題的一種最基本的思想。在具體內(nèi)容上,化歸思想有加法與減法的轉(zhuǎn)化,乘法與除法的轉(zhuǎn)化,乘方與開方的轉(zhuǎn)化,添加輔助線,增設(shè)輔助元,等等。因此,在教學(xué)中教師首先要讓學(xué)生認(rèn)識(shí)到,常用的很多數(shù)學(xué)方法實(shí)質(zhì)上就是轉(zhuǎn)化的方法,使學(xué)生確信轉(zhuǎn)化是可能的,而且是必須的。其次要結(jié)合具體教學(xué)內(nèi)容進(jìn)行有意識(shí)的訓(xùn)練,使學(xué)生掌握這一具有重大價(jià)值的思想方法。在具體教學(xué)過程中教師要設(shè)出問題讓學(xué)生去觀察,探索轉(zhuǎn)化的路子。例如在求解分式方程時(shí),我引導(dǎo)學(xué)生運(yùn)用化歸的方法,將分式方程轉(zhuǎn)化為整式方程,進(jìn)而求得分式方程的解。

2.數(shù)形結(jié)合的思想方法

數(shù)形結(jié)合的思想可以使學(xué)生從不同的側(cè)面理解問題,加深對(duì)問題的認(rèn)識(shí),提供解決問題的方法,有利于培養(yǎng)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。

運(yùn)用數(shù)形結(jié)合的思想方法思考問題,能把抽象的數(shù)量關(guān)系變?yōu)樾蜗蟮闹庇^幾何,也能把幾何圖形問題轉(zhuǎn)化為數(shù)量關(guān)系問題去解決。教師引導(dǎo)學(xué)生通過數(shù)形結(jié)合的數(shù)學(xué)思想方法來學(xué)習(xí)相反數(shù)、絕對(duì)值的定義、有理數(shù)大小比較的法則、函數(shù)等,可以大大減輕學(xué)生學(xué)習(xí)這些知識(shí)的難度。教師要將數(shù)形結(jié)合思想的教學(xué)貫穿于整個(gè)數(shù)學(xué)教學(xué)的始終。

3.分類討論的思想方法

“分類”源于生活,分類思想是自然科學(xué)乃至社會(huì)科學(xué)中的基本邏輯方法,也是研究數(shù)學(xué)問題的重要思想方法。

從整體布局上看,初中數(shù)學(xué)分代數(shù)、幾何兩大類,采用不同方法進(jìn)行研究,就是分類思想的體現(xiàn);從具體內(nèi)容上看,實(shí)數(shù)的分類、式的分類、三角形的分類、方程的分類、函數(shù)的分類等等,也是分類思想的具體體現(xiàn)。教師對(duì)學(xué)習(xí)內(nèi)容進(jìn)行分類,可以降低學(xué)習(xí)難度,增強(qiáng)學(xué)習(xí)的針對(duì)性。在教學(xué)過程中教師應(yīng)啟發(fā)學(xué)生按不同的情況去對(duì)同一對(duì)象進(jìn)行分類,幫助他們掌握好分類的方法原則,形成分類的思想。如當(dāng)a取任意實(shí)數(shù)時(shí),對(duì)|a-3|的值的分類討論:當(dāng)a≥3時(shí),|a-3|=a-3;當(dāng)a≤3時(shí),|a-3|=3-a。

4.函數(shù)的思想方法

函數(shù)思想是客觀世界中事物運(yùn)動(dòng)變化、相互聯(lián)系、相互制約的普遍規(guī)律在數(shù)學(xué)中的反映。

教師要重視函數(shù)的思想方法的教學(xué)。初中代數(shù)中的正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)雖然安排在初三學(xué)習(xí),但教材中函數(shù)思想從初一就已經(jīng)開始滲透。這就要求教師在教學(xué)上要有意識(shí)、有計(jì)劃、有目的地對(duì)學(xué)生進(jìn)行函數(shù)思想方法的培養(yǎng)。

例如用直角三角形邊與邊的比值定義的銳角三角函數(shù);在直角坐標(biāo)系中,由角的終邊上一點(diǎn)引出的三個(gè)量x,y,r中任意兩個(gè)量之比定義任意角的三角函數(shù),等等。這一系列的知識(shí)體系,自始至終貫穿了函數(shù)、映射、對(duì)應(yīng)的數(shù)學(xué)思想方法。

當(dāng)然,初中數(shù)學(xué)學(xué)習(xí)的思想方法還有很多,像觀察與實(shí)驗(yàn)、分析與綜合、歸納與類比、討論的思想方法、幾何變換的思想方法,等等。教師在教學(xué)實(shí)踐中應(yīng)立足于數(shù)學(xué)思想方法的教學(xué),充分挖掘教材中的數(shù)學(xué)思想方法,有目的、有意識(shí)、有計(jì)劃地滲透、介紹和強(qiáng)調(diào)數(shù)學(xué)思想方法,減少盲目性和隨意性。教師要精心設(shè)計(jì)每一個(gè)單元、每一堂課的教學(xué)目標(biāo)和問題提出、情景創(chuàng)設(shè)等教學(xué)過程的各個(gè)環(huán)節(jié)。教師只有讓學(xué)生掌握了這把金鑰匙,才能使學(xué)生學(xué)好數(shù)學(xué)、提高數(shù)學(xué)素養(yǎng)、增強(qiáng)創(chuàng)新意識(shí)、提高創(chuàng)新能力。

三、數(shù)學(xué)思想方法的教學(xué)模式