前言:想要寫出一篇引人入勝的文章?我們特意為您整理了數(shù)據(jù)挖掘技術(shù)的計算機犯罪取證應(yīng)用范文,希望能給你帶來靈感和參考,敬請閱讀。
摘要:數(shù)據(jù)挖掘是一種特殊的數(shù)據(jù)分析過程,其不僅在功能上具有多樣性,同時還具有著自動化、智能化處理以及抽象化分析判斷的特點,對于計算機犯罪案件中的信息取證有著非常大的幫助。本文結(jié)合數(shù)據(jù)挖掘技術(shù)的概念與功能,對其在計算機犯罪取證中的應(yīng)用進(jìn)行了分析。
關(guān)鍵詞:數(shù)據(jù)挖掘技術(shù);計算機;犯罪取證
隨著信息技術(shù)與互聯(lián)網(wǎng)的不斷普及,計算機犯罪案件變得越來越多,同時由于計算機犯罪的隱蔽性、復(fù)雜性特點,案件偵破工作也具有著相當(dāng)?shù)碾y度,而數(shù)據(jù)挖掘技術(shù)不僅能夠?qū)τ嬎銠C犯罪案件中的原始數(shù)據(jù)進(jìn)行分析并提取出有效信息,同時還能夠?qū)崿F(xiàn)與其他案件的對比,而這些對于計算機犯罪案件的偵破都是十分有利的。
1數(shù)據(jù)挖掘技術(shù)的功能與應(yīng)用分析
1.1數(shù)據(jù)挖掘技術(shù)的概念
數(shù)據(jù)挖掘技術(shù)是針對當(dāng)前信息時代下海量的網(wǎng)絡(luò)數(shù)據(jù)信息而言的,簡單來說,就是從大量的、不完全的、有噪聲的、模糊的隨機數(shù)據(jù)中對潛在的有效知識進(jìn)行自動提取,從而為判斷決策提供有利的信息支持。同時,從數(shù)據(jù)挖掘所能夠的得到的知識來看,主要可以分為廣義型知識、分類型知識、關(guān)聯(lián)性知識、預(yù)測性知識以及離型知識幾種。
1.2數(shù)據(jù)挖掘技術(shù)的功能
根據(jù)數(shù)據(jù)挖掘技術(shù)所能夠提取的不同類型知識,數(shù)據(jù)挖掘技術(shù)也可以在此基礎(chǔ)上進(jìn)行功能分類,如關(guān)聯(lián)分析、聚類分析、孤立點分析、時間序列分析以及分類預(yù)測等都是數(shù)據(jù)挖掘技術(shù)的重要功能之一,而其中又以關(guān)聯(lián)分析與分類預(yù)測最為主要。大量的數(shù)據(jù)中存在著多個項集,各個項集之間的取值往往存在著一定的規(guī)律性,而關(guān)聯(lián)分析則正是利用這一點,對各項集之間的關(guān)聯(lián)關(guān)系進(jìn)行挖掘,找到數(shù)據(jù)間隱藏的關(guān)聯(lián)網(wǎng),主要算法有FP-Growth算法、Apriori算法等。在計算機犯罪取證中,可以先對犯罪案件中的特征與行為進(jìn)行深度的挖掘,從而明確其中所存在的聯(lián)系,同時,在獲得審計數(shù)據(jù)后,就可以對其中的審計信息進(jìn)行整理并中存入到數(shù)據(jù)庫中進(jìn)行再次分析,從而達(dá)到案件樹立的效果,這樣,就能夠清晰的判斷出案件中的行為是否具有犯罪特征[1]。而分類分析則是對現(xiàn)有數(shù)據(jù)進(jìn)行分類整理,以明確所獲得數(shù)據(jù)中的相關(guān)性的一種數(shù)據(jù)挖掘功能。在分類分析的過程中,已知數(shù)據(jù)會被分為不同的數(shù)據(jù)組,并按照具體的數(shù)據(jù)屬性進(jìn)行明確分類,之后再通過對分組中數(shù)據(jù)屬性的具體分析,最終就可以得到數(shù)據(jù)屬性模型。在計算機犯罪案件中,可以將按照這種數(shù)據(jù)分類、分析的方法得到案件的數(shù)據(jù)屬性模型,之后將這一數(shù)據(jù)屬性模型與其他案件的數(shù)據(jù)屬性模型進(jìn)行對比,這樣就能夠判斷嫌疑人是否在作案動機、發(fā)生規(guī)律以及具體特征等方面與其他案件模型相符,也就是說,一旦這一案件的數(shù)據(jù)模型屬性與其他案件的數(shù)據(jù)模型屬性大多相符,那么這些數(shù)據(jù)就可以被確定為犯罪證據(jù)。此外,在不同案件間的共性與差異的基礎(chǔ)上,分類分析還可以實現(xiàn)對于未知數(shù)據(jù)信息或類似數(shù)據(jù)信息的有效預(yù)測,這對于計算機犯罪案件的處理也是很有幫助的。此外,數(shù)據(jù)挖掘分類預(yù)測功能的實現(xiàn)主要依賴決策樹、支持向量機、VSM、Logisitic回歸、樸素貝葉斯等幾種,這些算法各有優(yōu)劣,在實際應(yīng)用中需要根據(jù)案件的實際情況進(jìn)行選擇,例如支持向量機具有很高的分類正確率,因此適合用于特征為線性不可分的案件,而決策樹更容易理解與解釋。
2數(shù)據(jù)挖掘技術(shù)在計算機犯罪取證中的具體應(yīng)用思路
對于數(shù)據(jù)挖掘技術(shù),目前的計算機犯罪取證工作并未形成一個明確而統(tǒng)一的應(yīng)用步驟,因此,我們可以根據(jù)數(shù)據(jù)挖掘技術(shù)的特征與具體功能,對數(shù)據(jù)挖掘技術(shù)在計算機犯罪取證中的應(yīng)用提供一個較為可行的具體思路[2]。首先,當(dāng)案件發(fā)生后,一般能夠獲取到海量的原始數(shù)據(jù),面對這些數(shù)據(jù),可以利用FP-Growth算法、Apriori算法等算法進(jìn)行關(guān)聯(lián)分析,找到案件相關(guān)的潛在有用信息,如犯罪嫌疑人的犯罪動機、案發(fā)時間、作案嫌疑人的基本信息等等。在獲取這些基本信息后,雖然能夠?qū)Π讣幕咎卣饔幸欢ǖ牧私?,但犯罪嫌疑人卻難以通過這些簡單的信息進(jìn)行確定,因此還需利用決策樹、支持向量機等算法進(jìn)行分類預(yù)測分析,通過對原始信息的準(zhǔn)確分類,可以得到案件的犯罪行為模式(數(shù)據(jù)屬性模型),而通過與其他案件犯罪行為模式的對比,就能夠?qū)Ψ缸锵右扇说木唧w特征進(jìn)行進(jìn)一步的預(yù)測,如經(jīng)常活動的場所、行為習(xí)慣、分布區(qū)域等,從而縮小犯罪嫌疑人的鎖定范圍,為案件偵破工作帶來巨大幫助。此外,在計算機犯罪案件處理完畢后,所建立的嫌疑人犯罪行為模式以及通過關(guān)聯(lián)分析、分類預(yù)測分析得到的案件信息仍具有著很高的利用價值,因此不僅需要將這些信息存入到專門的數(shù)據(jù)庫中,同時還要根據(jù)案件的結(jié)果對數(shù)據(jù)進(jìn)行再次分析與修正,并做好犯罪行為模式的分類與標(biāo)記工作,為之后的案件偵破工作提供更加豐富、詳細(xì)的數(shù)據(jù)參考。
3結(jié)束語
總而言之,數(shù)據(jù)挖掘技術(shù)自計算機犯罪取證中的應(yīng)用是借助以各種算法為基礎(chǔ)的關(guān)聯(lián)、分類預(yù)測功能來實現(xiàn)的,而隨著技術(shù)的不斷提升以及數(shù)據(jù)庫中的犯罪行為模式會不斷得到完善,在未來數(shù)據(jù)挖掘技術(shù)所能夠起到的作用也必將越來越大。
參考文獻(xiàn)
[1]李艷花.數(shù)據(jù)挖掘在計算機動態(tài)取證技術(shù)中的應(yīng)用[J].信息與電腦(理論版),2017(02):174-176.
作者:周永杰 單位:河南警察學(xué)院信息安全系