公務(wù)員期刊網(wǎng) 精選范文 卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法范文

卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法主題范文,僅供參考,歡迎閱讀并收藏。

卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法

第1篇:卷積神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法范文

關(guān)鍵詞:深度學(xué)習(xí);器材管理;深度信念網(wǎng)絡(luò);效率;損耗

1.引言

深度學(xué)習(xí)是機器學(xué)習(xí)的延伸和進一步發(fā)展,它基于機器學(xué)習(xí),從廣義上講是機器學(xué)習(xí)的一種,但與機器學(xué)習(xí)有較大不同,深度學(xué)習(xí)的模型和人腦皮層結(jié)構(gòu)有較大相似,從某種意義上講,深度學(xué)習(xí)是智能學(xué)習(xí),可對復(fù)雜數(shù)據(jù)進行有效處理[1]。深度學(xué)習(xí)模型既可以作為特征提取器,也可以用作特征分類器,并且二者可以同時應(yīng)用,直接得到想要的分類結(jié)果。器材有成千上萬種,每種器材的性能、數(shù)量、有效期、生產(chǎn)廠家這些基本要素Ю戳舜罅康氖據(jù),而深度學(xué)習(xí)應(yīng)用于大數(shù)據(jù)挖掘方面,實踐中已經(jīng)取得較好的效果?,F(xiàn)在是一個“大數(shù)據(jù)+深度學(xué)習(xí)”的時代。本文研究在器材管理中如何運用深度學(xué)習(xí),來探尋器材管理中蘊含的內(nèi)在規(guī)律,通過得出的管理規(guī)則進行器材管理,來提高器材管理的信息化水平。

2.深度學(xué)習(xí)的典型模型

深度學(xué)習(xí)基礎(chǔ)是受限玻爾茲曼機(RBM),玻爾茲曼機( BM)可以認(rèn)為是一種能量模型。即參數(shù)空間中每一種情況均有一個標(biāo)量形式的能量與之對應(yīng)。對全連通玻爾茲曼機進行簡化,其限制條件是在給定可見層或者隱層中的其中一層后,另一層的單元彼此獨立,即為受限玻爾茲曼機。深度學(xué)習(xí)的典型模型主要有:自動編碼器(AE),卷積神經(jīng)網(wǎng)絡(luò)(CNN),深度信念網(wǎng)絡(luò)(DBN)三種[2]。

(1)自動編碼器

自編碼器的基本原理:將輸入的原始信號進行編碼,使用編碼得到的新信號重建原始信號,求得重建的元信號與原始信號相比重建誤差最小。它的優(yōu)點是可以有效的提取信號中的主要特征,減少信息冗余,提高信息處理效率。模式分類中經(jīng)常用到的以下方法:K均值聚類、稀疏編碼、主成分分析等均可理解為是一個自動編碼器。

(2)卷積神經(jīng)網(wǎng)絡(luò)

卷積神經(jīng)網(wǎng)絡(luò)(CNN)善于提取數(shù)據(jù)局部特征,模型復(fù)雜度較低,權(quán)值的數(shù)量較少,它組合局部感受野(滑動窗口)、權(quán)重共享(減少自由參數(shù)數(shù)量)、和空間或時間上的子采樣這3 種結(jié)構(gòu)去確保平移和變形上的不變性。

(3)深度信念網(wǎng)絡(luò)

深度信念網(wǎng)絡(luò)(DBN)主要采用貪婪逐層訓(xùn)練方法。簡言之通過預(yù)先訓(xùn)練與反向調(diào)節(jié)來訓(xùn)練整個DBN網(wǎng)絡(luò):在預(yù)先訓(xùn)練階段,先逐個訓(xùn)練每一個受限玻爾茲曼機RBM,逐層疊加,并將下一層的RBM 的輸出作為上一層RBM 的輸入; 在反向調(diào)節(jié)階段可以采用BP訓(xùn)練,通過誤差函數(shù)進行反向調(diào)節(jié).

3.基于深度信念網(wǎng)絡(luò)(DBN)的器材管理方法

器材管理的目的是在最大器材利用率下所用資金最少,耗費管理人員精力最少。從模型分析上來說,這是一個求最優(yōu)化模型的問題。深度信念網(wǎng)絡(luò)在求取最優(yōu)化方面具有一定的優(yōu)越性。深度信念網(wǎng)絡(luò)(DBN)的優(yōu)點:(1)采用并行結(jié)構(gòu),可同時處理多組數(shù)據(jù),計算效率得到較大提升,對處理大數(shù)據(jù)有優(yōu)勢;(2)可以用較小的模型參數(shù)波動得到較高的分類結(jié)果,模型穩(wěn)定性較好[3]。

對器材管理者來說如何制定性價比最高的器材采購方案,最優(yōu)的器材下發(fā)方案,最優(yōu)的器材存儲方案是急需解決的三個問題。

器材采購方案:其制定主要基于器材的價格,儲存年限,采購批次,采購量,售后服務(wù)等因素,針對每種器材的上述指標(biāo)進行量化打分,再根據(jù)每種器材的側(cè)重點分配量化系數(shù),整合成10種數(shù)據(jù)輸入。將這些數(shù)據(jù)輸入到訓(xùn)練好的深度信念網(wǎng)絡(luò)(DBN)中得出每種器材的采購點數(shù),根據(jù)點數(shù)決定采購的器材數(shù)量、品種、規(guī)格和型號。

器材的下發(fā)方案:器材的下發(fā)要考慮不同單位的需求,現(xiàn)有庫存情況,近期器材補充情況,近期大項工作需求情況,根據(jù)不同情況對不同單位,不同器材,具體工作設(shè)定不同顏色的標(biāo)簽,通過標(biāo)簽整合,將這些數(shù)據(jù)輸入到訓(xùn)練好的深度信念網(wǎng)絡(luò)(DBN)中得到具體的下?lián)芊桨浮?/p>

器材儲存方案:儲存主要包括使用單位庫存情況,倉庫庫存情況,供貨單位協(xié)議代儲情況,運用深度信念網(wǎng)絡(luò)(DBN)對器材消耗情況進行分析,進而得出,單位庫存的數(shù)質(zhì)量,使用單位庫存的數(shù)質(zhì)量,供貨單位協(xié)議代儲數(shù)質(zhì)量,使三者處于一個最優(yōu)化狀態(tài),既不影響使用,又可降低庫存空間的需求,減少資金占用。

4. 實驗結(jié)果

本文采用深度信念網(wǎng)絡(luò)(DBN)對1000種器材采購、運輸、庫存、消耗使用以及不同品牌的通用器材采購成本進行了實驗分析,通過深度信念網(wǎng)絡(luò)(DBN)的優(yōu)化,采購效率提高10%,運輸時間縮短20%,庫存量降低15%,使用消耗準(zhǔn)確度提高5%,采購成本降低18%。

5. 未來發(fā)展與展望

深度學(xué)習(xí)方法在器材管理中的應(yīng)用還處于初步探索之中,但是初步運用表明,其在“大數(shù)據(jù)+云計算”時代,對提高器材管理的信息化水平具有較大的實用價值和經(jīng)濟價值,用于器材管理的深度學(xué)習(xí)模型,還較為簡單,還有進一步發(fā)展的空間,實踐應(yīng)用中對器材數(shù)據(jù)特征的提取還有待加強,只有深刻的理解器材管理的特征及需求,才能有針對性的建立模型,提高模型的可靠性和有效性。使器材管理水平更上一層樓,使器材管理跟上信息化發(fā)展的步伐。

參考文獻:

[1] 孫志軍,薛磊,許陽明.基于深度學(xué)習(xí)的邊際Fisher分析特征提取算法[J].電子與信息學(xué)報,2013,35(4):805-811.

[2] 孫志軍,薛磊,許陽明,等.深度學(xué)習(xí)研究綜述[J].計算機應(yīng)用研究, 2012, 29( 8) : 2806 - 2810.

[3] 胡曉林,朱軍.深度學(xué)習(xí)―――機器學(xué)習(xí)領(lǐng)域的新熱點[J].中國計算機學(xué)會通訊, 2013,9( 7) : 64 - 69.

作者簡介:

康克成(1981.04-)河北昌黎人,研究生,碩士,工程師,中國人民92819部隊,研究方向:信息與通信工程;

王強(1981.02-)山東膠州人,本科,助理工程師,中國人民92819部隊,研究方向:裝備管理;